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CHAPTER I 

INTRODUCTION AND BACKGROUND 

Environmental, and economic concerns have stemmed from the association of 

Upper Mississippi River Basin (MRB) agriculture and nitrate leachate. This connection 

between nitrate loss from agriculture fields and the eutrophication (hypoxia) in the Gulf 

of Mexico has become inherently clear (Alexander et al., 2000). Hypoxic zones are areas 

of low dissolved oxygen that occur in oceans and lakes due to excess nutrient loading 

(Helly and Levin, 2004). In response to these water quality issues, the United States 

Environmental Protection Agency (EPA) have developed a nutrient reduction strategy to 

lessen the total nitrogen and phosphorus loading by 45%, with an embedded goal to 

diminish hypoxia dimensions within the Gulf to a total of 5,000 Km2 (David et al., 2014). 

Nitrate (NO3
-) is the form of nitrogen with the highest degree of focus. This is because a 

number of studies have consistently established that NO3
- is the dominant form of 

nitrogen existing within the soil water, due to the lack of a positive charge and physical 

interaction with the soil particles (Jacinthe et al., 1999). According to Goolsby the 

amount of nitrate loading delivered to the Gulf of Mexico has nearly tripled since the 

1950's (Goolsby et al., 1999). The Mississippi River annually contributes 1.57 million 

metric tons of NO3
- to the Gulf of Mexico. Multiple studies approximate up to 81% of the 

total nitrogen flux are a derivative of agriculture. Leachate as subsurface flow and runoff 
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as overland flow have been directly linked to 63% of the total, while atmospheric 

deposition (deposition of nitrous oxides from continuous consumption of fossil fuels) 

contributes about 18% of the 1.57 million metric tons (Alexander et al., 2000). 

MRB agriculture  has been recognized as one of the primary influences for the 

increase in NO3
- pollution of surface and subsurface waters due to the increased use of 

inorganic fertilizers in association with the removal of livestock and crop rotation 

diversity as primary cultural practices (Keeney and DeLuca, 1993). The effects of NO3
- 

loading are enhanced by the use of fall applied nitrogen fertilizers. Fall applied nitrogen 

fertilizer increases nitrate leaching compared to fertilizer that was applied in the spring. 

The application timing directly impacts the availability of that nutrient source during the 

growing season (Randall, 2005). However, many producers still choose to apply nitrogen 

in the fall due to lower fertilizer costs, better field conditions, and pre-plant time 

constraints (Smiciklas et al., 2008). Current nitrogen management practices including 

timing, rate and methods combined with a decrease in crop rotation diversity has been 

linked to increased nutrient loss and soil health degradation. Diversity can be achieved by 

employing annual and perennial crops in conjunction with a standard row crop rotation; 

as a result, decreasing the potential for eutrophication of immediate crop nutrient and 

water resources (Kanwar et al., 1993).  

One nitrogen management system that has been proven to reduce the leaching 

potential and improve N use efficiencies is the inclusion of winter annual cover crop 

species. Cover crops, if employed correctly, could help to reduce pollution from excess 

residual and inorganic applied nitrogen (Danso et al., 1991). Certain cover crop species 

are characteristically grown with the purpose of scavenging as much available nitrogen 
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from the soil as possible. Once sequestered, the nitrogen within the biomass of the cover 

crop is released back into the soil as it begins to decompose (Ditsch and Alley 1991). 

Seeding cover crops after the harvest of a previous cash crop can effectively utilize 

residual nitrogen pools. More research is needed on the implementation of such cover 

crop species into current nitrogen management systems. 

To our knowledge there has been little research done on the impacts of cover 

crops on a fall nitrogen management system within the MRB. The majorities of the 

documented cover crop integration research has utilized unconventional application 

methods to document their benefits and were conducted in different climatic regions. 

According to a study conducted by Lacey and Armstrong, 2013, cover crops have the 

capacity to impact the distribution of inorganic nitrogen within the soil profile in a silage 

cropping system at a single fall nitrogen application rate (Lacey and Armstrong, 2013). 

Therefore, there is a dearth of knowledge in regard to the relationship between certain 

cover crop species and the efficacy of fall applied nitrogen at various rates in a 

commercial practice. The purpose of this study is to assess the effects of cover crops and 

alternate application rates in a row crop (corn) situation in order to improve the efficacy 

of the fall applied nitrogen management system.  
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Research Hypotheses 

1. All cover crop treatments will have reduced soil nitrate (NO3-N) concentration at 

lower depths and increased soil ammonium (NH4-N) concentrations at the upper 

depths versus the no-cover control.  

2.  All cover crop treatments will increase the percent of the total N uptake at each 

critical crop development stages than in the no-cover control, along with a 

subsequent increase in grain yield.       

Research Objectives 

1. Investigate the efficacy of winter cover crops to impact the distribution of soil  

inorganic N following fall applied anhydrous ammonia. 

2. Determine the applied effects of cover crops on overall grain yield and crop  

uptake at critical growth stages when employing alternate application rates. 
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CHAPTER II 

LITERATURE REVIEW 

Nitrogen Management Systems within the Upper Mississippi River Basin 

States within the upper Mississippi River Basin (MRB) have been vital for overall corn 

and soybean production in the United States. In 2012, Iowa, Illinois, Indiana, Minnesota 

and Nebraska accounted for 60% of the total corn kg/ha-1 harvested (USDA, 2012). In 

2009, those states also produced more than 80% of the total (31.5 million hectares) 

soybean hectares within the United States according to the USDA (2009). Producers 

within this region predominately implement a corn-soybean crop rotation. However, 

based upon a model projected by the USDA-ERS Regional Environmental and 

Agriculture Programming (REAP), continuous corn will represent approximately 30% of 

the corn ha-1 in the United States by 2015. This increase is directly correlated with 

potential for higher overall return on investment (ROI) due to inflated market prices 

(Malcolm, 2009). Conversely, research has indicated that yield declines in these types of 

systems, when compared with conventional corn-soybeans rotations (Gentry, 2013). The 

removal of soybeans from the rotation also introduces increased annual fertilizer needs; 

particularly nitrogen. The nitrogen requirements of corn are generally met by the use of 

inorganic fertilizer, unlike soybean, which have the capacity to fix atmospheric nitrogen.  

This adds complexity to the management system within this region and further 

compounds nitrogen (N) loading to local water bodies. Crop selection within this region
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is predominately driven by the dominant soil type present and weather patterns 

experienced throughout the growing season.  

The aforementioned Upper Mississippi River Basin area has been described by 

the USDA as prime farmland, or land that has the best combination of physical and 

chemical characteristics for producing food, feed, forage, fiber and oilseed crops. The 

predominant soil order found within this highly fertile region are Mollisols. In the United 

States, Mollisols are one of the most extensive soil orders, accounting for approximately 

21.5% of the total land area (McDaniel). This soil order is defined as a soil of grassland 

ecosystems; characterized by a thick, dark surface horizon (>25 cm thick). “This fertile 

surface horizon, known as a mollic epipedon, characteristically forms under grass 

(prairie) in climates that have a moderate to pronounced seasonal moisture deficit” (Soil 

Taxonomy- USDA-NRCS). Theses soils have a naturally high OM content; 

approximately 3-6% according to Hargrove and Luxmore (1988) high-resolution, 

national soil organic matter (SOM) map. The natural fertility of the Mollisol soil class 

that contributes to crop productivity, also influences the NO3
- loading potential to surface 

water.  

USDA soil texture maps illustrate these highly productive (nitrogen rich) regions 

within the Mississippi river basin. The predominant soil textural class is silt loam/silty 

clay loam soils (USDA-NRCS). This textural class of soil is indicative of relatively high 

clay content, typically dominated by 2:1 layer silicates (Allen and Fanning, 1983). The 

approximate content of various particle sizes and OM content within the Mollisol soil 

matrix significantly influence the water infiltration rate, soil permeability and water 

holding capacity. The dynamic properties of a Mollisol directly influence water 
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movement and drainage capability, therefore governor the rate at which nitrates (NO3
-) 

are removed via leaching and denitrification processes. The drainage classification of two 

states within this region (Illinois and Iowa) have been categorized as average drainage 

capacity, with many regions that range from excessively drained to poorly drained based 

upon soil class (USDA-NRCS 2012). The presence of artificial drainage increases the 

overall rate at which water and nutrients are transported through the soil profile, to be 

discharged to surface water (Carlson et al., 2011). A study conducted by Moorman et al 

(2004) showed how an Iowa watershed annual nitrate loss via artificial tile can vary from 

4 to 66 kg/ha-1 dependent upon events of precipitation.  

The average annual precipitation (rainfall) within this region increase 

directionally, from north to south, ranging from approximately 50 cm in northern 

Minnesota to 120 cm in the southernmost part of Missouri. Peak monthly precipitation 

totals generally occur during the spring and summer months. A direct correlation has 

been made with substantial rainfall events during these warmer months and excessive 

NO3
- movement to surface waters. However, this relationship is not noted when regional 

precipitation is at its lowermost point. The average annual snowfall amount can vary 

from <25 cm in the southern part of the region to > 500 cm in northern Michigan. Winter 

recharge of soil moisture is partly dependent upon annual snowfall totals; however, the 

fundamental dynamic (freeze-thaw cycle) is primarily temperature driven (Andresen et 

al., 2012). 

Average annual temperatures within the MRB can vary by ~12°C across the 

region. The temperatures can range from 3.5°C to 15.5°C in Northern Minnesota to 

Southern Missouri respectively (Andresen et al., 2012). Seasonally, the temperatures 
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across this region peak in the latter part of July or early August. Due to temperature flux 

within the region, a temperature-derived index (growing degree day-GDD) of time spent 

at or above the 10 degree (°C) threshold is used to determine the amount of “Heat Units” 

received on a daily or annual basis. Growing degree days on an annual basis can range 

from 2000-4000 in northern Michigan and Minnesota to southern Missouri and Illinois 

respectively (Andresen et al., 2012). The quantity of heat units received during a growing 

season is the primary catalyst that induces natural mineralization and nitrification, 

(conversion of NH4
+ to NO3

-) these processes significantly contribute to nitrate leaching 

below the root intercept zone of the cash crop. Each of the crops grown within the river 

basin have a specific temperature and precipitation range characterized by upper and 

lower limits that regulate overall growth of the crop (Hatfield et al., 2011). It is difficult 

to select “a one size fits all” approach to fertility management based upon the amount of 

weather variability and current crops grown within the region that contribute to varying 

volumes of seasonal N loading.  

A five-year study on nitrogen timing was conducted by Dr. Ken Smiciklas, in 

which Lake Bloomington, Illinois watershed producers were surveyed to estimate the 

average timing of their nitrogen application. The study determined approximately 55% of 

the cumulative producers within the watershed primarily utilized fall application 

methods. Another 32% of the producers used spring application as their primary 

application method, and 13% of the producers utilized multiple application timing 

(Smiciklas et al., 2008). According to numerous publications, spring N application has 

generally resulted in greater yield (kg/ha-1) when directly compared with applications 

completed in the fall (Vetsch, 2004; Randall, 2005). However, this variance in yield is 



www.manaraa.com

 

9 
 

only significant when temperature and rainfall values are seasonally abnormal. Large 

rainfall events result in a sizeable reduction of plant available nitrogen caused by 

excessive leaching throughout the soil profile in either application systems.  

Environmental Impacts of Current Nitrogen Management Strategies 

National Impact 

Environmental, and economic concerns have stemmed from the association of 

MRB agriculture and NO3
- leachate. Studies have consistently established that NO3

- is the 

dominant form of nitrogen existing within the soil water, due to the lack of a positive 

charge and physical interaction with the soil particles (Jacinthe et al., 1999). Soil nitrogen 

is susceptible to multiple loss pathways that include leaching, denitrification and 

volatilization. These losses contribute to the unique challenge of N management to ensure 

adequate nitrogen availability at peak crop demand. For corn production, recommended 

nitrogen fertilizer rates are based on utilization efficiencies of approximately 60% for 

states within the MRB; however, suboptimal growing conditions can reduce this 

percentage to much lower levels (Chichester and Smith; 1978). The connection between 

nitrate loss from agriculture fields and the eutrophication (hypoxia) in the Gulf of Mexico 

has become inherently clear (Alexander et al., 2000). The Gulf of Mexico is currently the 

second largest hypoxic area in the world, and it is fed mainly by the Mississippi and 

Atchafalaya Rivers (Renaud, 1986; Rabalais, 2002).  

Hypoxic zones are areas of low dissolved oxygen that occur in oceans and lakes 

due to excess nutrient loading, these oxygen depleted regions no longer have the ability 

to support aquatic or marine ecosystems (Helly et al., 2004). Nutrient loading of surface 

waters derived from the MRB is the primary reason why the Mississippi River has been 
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connected with this seasonal hypoxic region within the Gulf of Mexico (Turner et al., 

1994). According to Goolsby the amount of nitrate loading delivered to the Gulf of 

Mexico has nearly tripled since the 1950's (Goolsby et al., 1999). The Mississippi River 

annually contributes 1.57 million metric tons of NO3
- to the Gulf of Mexico. Multiple 

studies approximate up to 81% of the total nitrogen flux are a derivative of agriculture. 

Leachate as subsurface flow and runoff as overland flow have been directly linked to 

63% of the total, while atmospheric deposition (deposition of nitrous oxides from 

continuous consumption of fossil fuels) contributes about 18% of the 1.57 million metric 

tons (Alexander et al., 2000).  

Using data from waste water treatment plants, the USDA estimates the cost of 

removing nitrate from U.S. drinking water supplies is over $4.8 billion per year. 

Agriculture’s contribution of these nitrate loading costs are estimated to be $1.7 billion 

per year (Smith et al., 1997). The USDA has indicated that reducing nitrate 

concentrations in source waters by one percent could reduce water treatment costs within 

the United States by up to $120 million dollars annually (USDA, NRCS, 2006).  

Local Impact 

 In response to the water quality and hypoxia concerns in the Gulf of Mexico, the 

United States EPA developed a watershed nutrient taskforce in 2008. This taskforce’s 

primary goal was to develop a proactive management plan to reduce and mitigate N 

loading to surface waters to improve overall water quality and to control hypoxia within 

the Gulf (2008 Action Plan). The action plan that was developed in 2008 called for each 

of the 12 states within the Mississippi river basin to reduce the amount of nutrient loading 

respectively contributed to surface waters. In 2011 the U.S. EPA provided the basic 
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framework for state plans (Illinois reduction strategy, 2015), which includes reduction 

goals and dates those goals are to be reached by (Table 1); due to annual load variability, 

progress will be measured based on a five year consecutive average. 

 

Table 1 

Watershed Milestones and Targets Reductions for Illinois 

Nutrient Phase 1 Milestones (%) Target reduction (%) 

Nitrate-nitrogen 15 % by 2025 45% 

Total phosphorus 25 % by 2025 45% 

Note. Data gathered from EPA, 2014 

  

According to the Illinois EPA, voluntary implementation of best management 

practices (BMP) are expected to build on efforts currently underway by producers 

throughout the state and in watersheds with existing nutrient reduction plans in order to 

mitigate agricultural non-point source effluence. The EPA expects the implementation of 

the BMP to increase with additional outreach, education and incentives (Illinois nutrient 

reduction strategy, 2015). The nutrient reduction strategy listed best management 

practices such as the four R’s: Right Timing, Right Rate, Right Source and Right 

Placement. Implementation could include riparian (vegetative) buffers, constructed 

wetlands, bioreactors and cover crops to potentially improve nutrient retention and reduce 

environmental degradation. 
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Nitrate Reduction Management Practices 

The 4 R’s 

The basic practices for improving nitrogen use efficiencies are agronomic application 

rate, appropriate timing of applications, proper placement and the correct source (USDA, 

NRCS, 2006). Implementation of the four application components in appropriation to 

fulfill the needs of a growing crop can aid in reducing N loss to surface waters. The 4 R’s 

as defined by the USDA: 

• Right Timing: Applying nitrogen in a practical manner as close to the time that the 

cash crop needs it; as opposed to the season before the crop is planted. 

• Right Rate: Applying an amount of nitrogen at a rate that accounts for all other 

sources of nitrogen, residual from previous crops, irrigation water, and 

atmospheric deposits. 

• Right Source: Matching the correct fertilizer product with soil properties and what 

is essential to the crop. This is achieved by balancing applications of nitrogen, 

phosphorus, potassium, and other nutrients according to crop needs and available 

soil nutrients.  

•  Right Placement: Injecting or incorporating the nitrogen into the soil to reduce 

leaching and losses to the atmosphere (USDA, NRCS 2006). 

Right timing. The timely application of nitrogen has received considerable 

research. Two dominant time frames that producers are able to implement their 

application methods within prior to the cash crop growing season; late fall and early 

spring. Late fall applications have been associated with possible yield reduction, due to 

prolonged periods of exposure to environmental factors before the plant can effectively 
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utilize the nitrogen source present. Spring in-season applications can be employed to 

optimize the efficiency of the input applied. This is achieved by applying the fertilizer 

closer to the optimum date of nitrogen utilization (Scharf et al., 2002). However, a seven 

year study conducted by Randall and Vetsch in Michigan investigating the impact of N 

timing on nitrate leaching via subsurface flow; statistical significance was only found in 

one year when directly comparing fall versus spring N management strategies (Randall et 

al., 2003). Conversely, in a year (1999) with abnormally high temperature and 

precipitation values, spring application increased corn yield by 25% compared with fall 

application across four various tillage systems (Vetsch and Randall, 2004). Despite N 

loss potential and decreased corn yield, in some areas of the MRB approximately 50% of 

the nitrogen fertilizer is still applied in the fall. Considering the listed pitfalls of fall 

application, it does have potential benefits for the producer, including optimum 

conditions for field work, time and more evenly distributed labor and equipment demands 

(Bundy, 1986). In addition, prices are generally cheaper in the fall season than in the 

spring due to the greater general availability of the product (Smiciklas et al., 2008).  

Right rate. Nitrogen fertilizer costs continue to be one of the most expensive and 

variable production costs for a corn crop. Traditionally, cultural practices followed the 

general precedent set by the previous generation of applying extra units of N based upon 

given field historical yield levels. This is no longer economically feasible, nor is it 

acceptable to obtain new environmental objectives set by the EPA (Camberato, 2012). 

According to the Illinois Agronomy Handbook, N rate recommendations in the past were 

based upon 1.2 pounds N bushel-1 of corn produced (Fernandez et al., 2009). This 

recommendation has since been revised due to the connection between over application 
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of fertilizers and N loading to surface waters. Current research is promoting the use of 

such tools as the corn nitrogen rate calculator. This N rate development tool is based 

upon the concept of “maximum return to nitrogen” (MRTN).  The MRTN is the point at 

which yield is optimized by considering economic factors such as average crop yield, 

corn and fertilizer prices for a given region (Fernandez et al., 2009). This economic 

return model was developed by Iowa State University to assist producers in making 

annual management decisions based upon current market scenarios (Fernandez et al., 

2009). Economic optimum N fertilizer rates for corn grain production vary within the 

MRB. Currently, nitrogen rate recommendations for a corn crop are developed for large 

geographical regions and have customarily been used without any consideration of in 

field variability. It has been documented that variability in soil properties affect the 

transport of soil NO3
- across an agronomic field (Bausch et al., 2001). However, 

producers continue to manage their fields with uniform and liberal applications of 

fertilizer due to the lack of understanding and technology to manage the variability that 

affects crop efficacy and overall economic return (Bausch et al., 2001).  

Right source. The application of nitrogen is essential to produce high yielding 

cropping systems necessary to meet the needs of the continually growing population. The 

manufacture of industrially fixed nitrogen (Haber-Bosch) is advantageous for corn 

production within the MRB (Wortmann et al., 2004). However, due to the excessive use 

of such products, agriculture is considered one of the major sources of N loading to 

surface waters. Some of the common fertilizers used within the region include anhydrous 

ammonia (AA, 82% N), urea-ammonium nitrate solution (UAN, 28-32% N) and urea 

(46% N) (Scharf et al., 2006). The most prominent nitrogen fertilizer source used within 
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the MRB is anhydrous ammonia (Scharf et al., 2006). According to the national 

agriculture safety database (NASD), anhydrous ammonia is one of the most efficient and 

commonly used N sources for row crop production despite the hazards of application 

(Baker, 1993). It contains the highest nutrient concentration of any fertilizer, it is one of 

the cheapest sources of N and the principal fertilizer to be applied in the fall. All of which 

have led to a dramatic increase in its use (Schmitt et al., 1993). In terms of safety of 

application, the other N sources outperform AA, which is why some producers prefer 

these products. Commercial fertilizer urea is generally broadcast applied as a solid 

granular product (Overdahl et al., 2015). However, this can still cause significant loss via 

volatilization if not incorporated by means of rainfall event (0.635 cm minimum) or 

tillage operation. Urea, once incorporated acts similarly to AA; nitrification occurs and 

presents the potential loss of plant available nutrients through leaching and denitrification 

processes (Overdahl et al., 2015). Urea-ammonium nitrate solution is the most prevalent 

liquid N fertilizer because it is safe to handle, and easily applied in side dress application 

scenarios (Nutrient Source Specifics, 2007). The benefit of UAN is due to the chemical 

composition of the solution; 25% of the total N is immediately available for plant uptake 

in the form of NO3
-, while the remainder of the total N is slowly available as nitrification 

occurs (Nutrient Source Specifics, 2007). If UAN application is timely, loss is minimal 

due to rapid crop uptake during early vegetative growth.       

Right placement. Accurate placement of the fertilizer source is considered 

essential to minimize nitrogen losses throughout the growing season. There are many 

application methods for nitrogen, including broadcast application, surface banding and 

direct injection. Broadcast applications are most often coupled with a dry urea fertilizer. 
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However, broadcast applications can result in substantial loss via volatilization. 

Atmospheric loss of a broadcasted fertilizer is generally avoided by means of fertilizer 

incorporation, accomplished primarily via tillage tool (Scharf et al., 2006). Surface 

banding of nitrogen can be useful when the source of nitrogen used is a UAN solution 

applied within a field with dense residual cover. This application method is rarely used, 

only when the producer has a lack of equipment necessary to properly inject the nitrogen 

source. Direct injection is the primary method of nitrogen application within the river 

basin for both anhydrous ammonia and UAN fertilizers (Scharf et al., 2006). Fall 

injection of anhydrous ammonia has been viewed as one of the primary contributors of 

non-point source N loading of local water bodies. This is due to the volatility of the 

product and the length of time that the nitrogen source is exposed to environmental 

factors before the plant can utilize it.  

Tile Water Interception 

Riparian buffers. According to the nutrient reduction strategy, one established 

nitrogen management practice is implementing riparian buffers. The USDA defines a 

riparian buffer as a band of herbaceous plants parallel to a river, stream or water body. 

The primary purpose is to protect near-stream soils from over-bank flows, trap harmful 

chemicals and prevent the eutrophication of streams by surface and subsurface flow. 

Subsurface flow from agricultural fields containing NO3
- , to be effectively removed from 

the system must pass through the riparian rhizosphere. Once the NO3
-  have reached this 

zone, the NO3
-  may either be absorbed by the plant roots and utilized for plant growth, or 

converted into a gaseous form of nitrogen by soil borne denitrifying bacteria (Riparian 

Buffers, NCSU, 2015). Riparian buffers have been repeatedly documented as having the 
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potential to effectively remove NO3
- from shallow ground waters. Clausen et al., (2012) 

found that the addition of a riparian buffer significantly reduced NO3
- concentrations 

(52%) in ground water via vegetative assimilation and denitrification. This reduction was 

primarily documented within the 2.5 m downslope wetland adjacent to the stream; the 

remainder 30 m upslope portion of the buffer had minimal impact on the ground water 

concentration. This is evident because riparian buffers placed within areas with high 

water tables, high levels of organic carbon and more aerobic conditions have been found 

to have much greater rates of denitrification (Jacobs and Gilliam, 1985).  

Constructed wetlands. The integration of a constructed wetland (non-historical 

wetland) is a BMP that has similar documented effects on NO3
- concentrations as riparian 

buffers. However, unlike riparian buffers which utilize root intercept to reduce nitrate 

concentrations, the primary mechanism of nitrate removal within a constructed wetland is 

denitrification. This process typically accounts for 60-95% of the removed concentration 

(Spieles and Mitsch, 2000). As defined by the United States Environmental Protection 

Agency (EPA), constructed wetlands are “artificial wastewater treatment systems 

consisting of shallow (usually less than 1 m deep) ponds or channels which have been 

planted with aquatic plants, which rely upon natural microbial, biological, physical and 

chemical processes to treat wastewater and non-point sources” (U.S. EPA, 1993-2000).  

These wetlands are engineered to approximate the water-cleansing process of 

natural wetlands. Crumpton et al., (1995) conducted a study on constructed wetlands and 

nitrate removal rates via denitrification and aquatic plant biomass assimilation. The study 

estimated that the eutrophication of subsurface ground water from a 100 hectare (ha) field 

producing corn could potentially be removed by 1 ha wetland. However, the author also 



www.manaraa.com

 

18 
 

noted that a wetland of this size would be limited during events of substantial rainfall. 

This is due to the necessary residence time needed for the microbial population to 

complete the denitrification process with the increased quantity of nitrate present within 

the wetland (Crumpton et al., 1995). 

Bioreactors. Bioreactors, another listed EPA nitrate loss mitigation tactic similar 

to constructed wetlands; this BMP also primarily achieves nitrate remediation via 

denitrification processes. As defined by the USDA-NRCS (2012) a bioreactor is “a 

structure containing a carbon source (ex. woodchips) installed to intercept subsurface 

drain (tile) flow or ground water, and reduce the concentration of NO3
-”. Providing the 

microbial population with an ample supply of carbon in conjunction with anaerobic 

conditions offers the optimal environment for nitrate removal from subsurface (tile) flow 

to be achieved (Christianson et al., 2011).  According to a study conducted by Woli et al. 

(2010) in Illinois, a bioreactors has the potential to remove a wide range of reactive 

nitrogen from the field tile system (23-98%). This wide range of removal efficiency is 

evidence that nitrate removal performance of bioreactors are influenced by a range of 

natural factors. A study from Iowa showed that temperature, NO3
- influx concentration 

and residence time were the driving factors for percent N removal rate and overall N load 

reduction (Christianson et al., 2012).  

 The inclusion of any of the aforementioned best management practices into MRB 

conventional cultural practices would aid in the reduction of NO3
- in groundwater. 

However, through the remediation of non-point source delivery to surface waters, 

anthropogenic N2O emissions currently derived from the agriculture industry could 

potentially increase beyond the current 50% contribution (Bakken et al., 2012). 
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Cover Crops 

Function. A cover crop is defined as a crop grown outside the primary growing 

season in order to prevent the loss of soil via erosion, increase biodiversity, and increase 

soil quality and fertility (Reeves et al., 1994). The concept of a living mulch cover crop 

was first evident in China 500 B.C. Indigenous farmers used the cover crops as an 

alternative to allowing the field to remain fallow (leaving exposed soil between growing 

seasons) to improve soil conditions (Paine et al., 1993). The inclusion of winter annual 

cover crop species into a spring N management system has been proven to reduce the 

leaching potential and improve N use efficiencies (Ditsch and Alley 1993). Winter annual 

cover crop species have the capacity to absorb residual N, naturally mineralized N, and N 

added in the form of inorganic fertilizers, inhibiting loss via the three primary loss 

pathways (Thorup-Kristensen et al., 2003). After the N is assimilated within the biomass 

of the cover crop, it is then released back into the soil as it decomposes, becoming 

available to the subsequent crop. As previously stated, weather variability within the 

region directly influences the distribution of the NO3
- within the soil profile. Therefore, it 

is crucial to have ground cover outside of the principal growing season to secure one of 

the producers’ largest input costs (Doran et al., 1990).  

The integration of cover crops into a conventional cropping system may serve to 

provide and conserve N for grain cash crops, reduce leaching potential, reduce soil 

erosion, reduce weed pressure, and increase soil organic matter content (Hartwig and 

Hoffman 1975). Although cover crops are a multi-faceted management tool, they are 

incorporated into cropping systems primarily to inhibit soil erosion (Romkens et al., 

1990). Soil erosion is a process that can reduce the productivity of any agricultural field 
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by removing the fertile topsoil. A cover crop stand physically reduces the amount of 

rainfall contacting the soil surface, preventing soil splashing and erosive surface runoff 

(Dabney, 1998). Another benefit of cover cropping that has increased integration into 

production systems is the potential for soil fertility management. The incorporation of 

certain cover crop species is being considered a viable option for producers needing to 

curb NO3
- losses and increase overall N use efficacy (Sattell et al., 1999). Cover crops 

may have the ability to improve the use efficiency of an assortment of soil 

macro/micronutrients; however, out of the 17 essential nutrients, the focus has been 

placed on the impact of cover crops on conventional nitrogen management.  

Cover crops have the ability to improve upon today’s conventional management 

systems in regard to functionality. However, those functions challenge producers’ ability 

to optimize their use within a given system. The capacity of cover crops to retain plant-

available nitrogen can help to reduce the potential for N loading to surface waters; 

conversely, this complicates the timely release of nitrogen for crop growth (Danso et al., 

1991).  

            Adoption. Formerly, the acceptance of cover cropping has been limited due to a 

lack of reception and use of contemporary farm type equipment, mainly the use of tillage 

practices (Paine et al., 1993). However, due to recent nationwide research efforts, the 

integration of cover cropping strategies into conventional production practices has been 

accelerated. According to a synopsis of crop producer surveys collected nationwide 

during the 2013-2014 cover cropping season by the conservation technology information 

center (CTIC), the average number of cover crop acres has risen per user, expanding from 

a mean of 80 acres in 2009 to an average of 207 acres in 2014. A recent trend of cover 
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crop implementation has been observed in the 2012-2013 SARE-CTIC Cover Crop 

Survey; in the three years prior to that survey year, cover crop acreage had increased by 

an average of about 30% per year among cover crop users. Further projections of 

producers’ 2014 acreage revealed an additional 10% increase in acres receiving some 

form cover crop. Of the total 2,903 respondents who answered the survey questions, 75% 

reported growing at least one species of cover crop in the past five years (Cover Crop 

Survey Report, 2013-2014). Based upon the surveyed producers, the MRB is the most 

densely cover cropped area in the continental United States. The greatest number of 

responses from producers implementing a cover cropping strategy were from Minnesota, 

Iowa, Missouri, Illinois, Indiana and Ohio, with 56 to 157 responses respectively (Cover 

Crop Survey Report, 2013-2014).    

Impact on corn nitrogen uptake and grain yield. Implementing a winter annual 

cover crop to scavenge nutrients from an agricultural field after the harvest of a previous 

cash crop can effectively assist in the utilization of any residual N (Sattell et al., 1999). 

Mineralization of the cover crop residues in the spring have the ability to supply the 

subsequent crop with additional N to efficiently produce a high yielding grain, while 

sustaining ground cover and minimizing environmental degradation (Doran et al., 1990). 

Lotter et al., (2003) conducted a long-term field study in Pennsylvania documenting yield 

differences in organic versus conventional systems. Lotter found that when drought 

conditions are experienced, an organic corn-soybean crop rotation coupled with a cover 

crop would out-yield the conventionally produced crop grown without a cover crop 

present. Correspondingly, a Southern Coastal Plains regional study established three 

years of quantitative data involving N timing, rates and cover crop inclusion into a 
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conservation tillage system. Reeves et al., (1993) reported based on multiple linear 

regression models, the maximum grain yields were obtained with a decreasing rate of 

application throughout the duration of the study. Also concluded from this study, split 

applications when coupled with a cover crop were deemed unnecessary due to the 

residual mineralization of the cover crop sustaining the late season crop needs (Reeves, 

1993). The correlation between cover crop inclusion and corn grain yield within the 

Midwest is not well documented under a fall applied N management system. 

Based upon the pool of knowledge in the literature, the inclusion of cover crops to 

improve the efficiency of N fertilizer in conventional row-crop agriculture is an emerging 

area of research. There is a dearth of knowledge in regard to the relationship between 

certain cover crop species and the efficacy of fall applied N at various application rates in 

a commercial practice. Therefore, the purpose of this study is to assess the effects of 

cover crops and alternate application rates in a row crop situation in order to improve the 

efficiency of the fall applied N management system.



www.manaraa.com

 

23 
 

REFERENCES 

"2008 Action Plan and Related Documents | Gulf of Mexico Hypoxia, Mississippi Basin | 
US EPA." 2008 Action Plan and Related Documents | Gulf of Mexico Hypoxia, 

Mississippi Basin | US EPA. Environmental Protection Agency, 2008. Web. 25 
Mar. 2015.  

 
Alexander, R.A., Smith, R.B., and Schwarz, G.E., 2000, Effect of stream channel size on 

the delivery of nitrogen to the Gulf of Mexico: Nature, v. 403. p. 758-761. 
  
Allen, B.L., and D.S. Fanning 1983. Composition and soil genesis, p. 141-192. ln L.P. 

Wilding et al. (eds.) Pedogenesis and soil taxonomy. I. Concepts and interaction. 
Eslevier, Amsterdam, the Netherlands. 

 
"Ammonium Nitrate." Hawley's Condensed Chemical Dictionary (2007): n. pag. Nutrient 

Source Specifics. International Plant Nutrition Institute. Web. 17 July 2015. 
 
Andresen, J., S. Hilberg, K. Kunkel, 2012: Historical Climate and Climate Trends in the 

Midwestern USA. In: U.S. National Climate Assessment Midwest Technical Input 
Report. J. Winkler, J. Andresen, J. Hatfield, D.Bidwell, and D. Brown, 
coordinators. Available from the Great Lakes Integrated Sciences and 
Assessments (GLISA) Center. 

 
Baker, David E. "National Ag Safety Database - Using Agricultural Anhydrous 

Ammonia Safely." National Ag Safety Database - Using Agricultural Anhydrous 

Ammonia Safely. University Extension, University of Missouri-Columbia, 

Columbia, MO, Oct. 1993. Web. 21 Apr. 2015.  

Bakken, L. R., L. Bergaust, B. Liu, and A. Frostegard. "Regulation of Denitrification at 

the Cellular Level: A Clue to the Understanding of N2O Emissions from Soils." 

Philosophical Transactions of the Royal Society B: Biological Sciences 367.1593 

(2012): 1226-234. Norwegian University of Life Sciences. Web. 4 June 2015.  

Bausch,W.C., and K. Diker. 2001. Innovative remote sensing techniques to increase 

nitrogen use efficiency of corn. In: J.A. Delgado (ed.). Special Issue: Journal 

Communication Soil Science Plant Analysis. 32(7 & 8):1371-1390.  



www.manaraa.com

 

24 
 

Bundy, L.G. 1986. Review: Timing nitrogen applications to maximize fertilizer 

efficiency and crop response in conventional corn production. J. Fert. Issues 3:99-

106. 

Camberato, Jim. 2012. A Historical Perspective on Nitrogen Fertilizer Rate 

Recommendations for Corn in Indiana (1953-2011). Purdue Extension.  

Carlson, Brad, Jeff Vetsch, and Gyles Randall. "Water Policy in Minnesota." University 

of Minnesota Extension (2011): n. pag. Extension.umn. University of Minnesota. 

Web. 24 June 2015.  

Chichester, F.W. and S. J. Smith. 1978. Disposition of N15-labeled fertilizer nitrate 
applied during corn culture in field lysimeters. J. Environ. Qual. 7:227–233. 

 
Christianson, Laura E., and Matthew Justin. Helmers. Woodchip Bioreactors for Nitrate 

in Agricultural Drainage. Ames, IA: Iowa State U Extension, 2011. Iowa State 
University, 2011. Web. 27 June 2015.  

 
Christianson, Laura E., Alok Bhandari, Matthew J. Helmers, Keegan J. Kult, and Todd 

Sutphin. "Performance Evaluation of Four Field Scale Agricultural Denitrification 
Bioreactors in Iowa." Agricultural and Biosystems Engineering. Iowa State 
University, 2012. Web. 27 June 2015.  

 
Clausen, J. C., K. Guillard, C. M. Sigmund, and K. Martin Dors. "Water Quality Changes 

from Riparian Buffer Restoration in Connecticut." Journal of Environment Quality 
29.6 (2000): 1751. Web. 3 June 2015.  

 
Constructed Wetlands Handbooks (Volumes 1-5): A Guide to Creating Wetlands for 

Agricultural Wastewater, Domestic Wastewater, Coal Mine Drainage and 
Stormwater in the Mid-Atlantic Region (1993-2000), United States Environmental 
Protection Agency. 

  
"Cover Crop Survey Report." (2013-2014): n. pag. COVER CROP SURVEY. 

Conservation Technology Information Center/ Sustainable Agriculture Research 
and Education, 2014. Web. 25 June 2015.  

 
Crumpton,W.G., J.L.Baker, J.Owens,C.Rose, and J. Stenback. 1995. Wetlands and 

streams as off-site sinks for agricultural chemicals. p. 49–52. In Clean water—
clean environment—21st century. Vol. 1. Proc. Conf. Working Group on Water 
Quality, USDA, Kansas City, MO. 5–8 Mar. 1995. Am. Soc. of Agric. Eng., St. 
Joseph, MI. 

 
Dabney, S.M. 1998. Cover crop impacts on watershed hydrology. J. Soil Water 

Cons. 53:207–213. 
 



www.manaraa.com

 

25 
 

Danso, S. K., C. Labandera, D. Pastorini, and S. Curbelo. 1991. Herbage yield and 
nitrogen fixation in a triple species mixed sward of white clover, lotus and fescue. 
Soil Biol. Biochem. 23:65–70. 

 
David, Mark B., Gregory F. McIsaac, Gary D. Schnitkey, George F. Czapar, and Corey 

A. Mitchell. "Science Assessment to Support an Illinois Nutrient Loss Reduction 
Strategy." (2014): n. pag. University of Illinois at Urbana - Champaign College of 
Agricultural, Consumer and Environmental Sciences Urbana, Illinois, 6 May 2014. 
Web. 27 Feb. 2015. <Science Assessment to Support an Illinois Nutrient Loss 
Reduction Strategy>. 

 
Ditsch, D. C.; Alley, M. M. (1991). "Nonleguminous Cover Crop Management for 

Residual N Recovery and Subsequent Crop Yields". Journal of Fertilizer Issues 8: 
6–13 

 
Ditsch, D.C., M.M. Alley, K.R. Kelley, and Y.Z. Lei. 1993. Effectiveness of winter rye 

for accumulating residual fertilizer N following corn. J. soil and Water Cons. 
48:125-132 

Doran, John W. "Nitrogen Cycling." Role of Cover Crops in Nitrogen Cycling (1990): n. 
pag. SWCS. Web. 23 Feb. 2014. 

 
Fernandez, Fabian G., Stephen A. Ebelhar, Emerson D. Nafziger, and Robert G. Hoeft. 

"Managing Nitrogen." Illinois Agronomy Handbook: 24th Edition. Urbana, IL: U 
of Illinois at Urbana-Champaign, College of Agriculture, Cooperative Extension 
Service, 2009. 113+. Print. 

 
Gentry, L.F., M.L. Ruffo, and F.E. Below. 2013. Identifying factors controlling the 

continuous corn yield penalty. Agron. J. 105:295-3033Hargrove, W.L. 1986. 
Winter legume as a nitrogen source for no-till grain sorghum. Agron. J. 78:70-74 

 
Goolsby, D.A., Battaglin, W.A., Lawrence, G.B., Artz, R.S., Aulenbach, B.T., Hooper, 

R.P., Keeney, D.R., and Stensland, G.J., 1999, Flux and sources of nutrients in the 
Mississippi-Atchafalaya River Basin--topic 3 report for the integrated assessment 
on hypoxia in the Gulf of Mexico: Silver Spring, Md., NOAA Coastal Ocean 
Office, NOAA Coastal Ocean Program Decision Analysis Series No. 17, 130 p. 

 
Hargrove, W.W. and R.J. Luxmore. 1988. A New High-Resolution National Map of 

Vegetation Ecoregions Produced Empirically Using Multivariate Spatial 
Clustering. 

 
Hartwig, N. L., and L. D. Hoffman. 1975. Suppression of perennial legume and grass 

cover crop for no-tillage corn. Proc., N.E. Weed Control Conf. 29: 82-89.  
 
Hatfield, J.L., Boote, K.J., Kimball, B.A., Ziska, L.H., Izaurralde, R.C., Ort, D., 

Thomson, A.M., and Wolfe, D.W. 2011. Climate Impacts on Agriculture: 
Implications for Crop Production. Agron. J. 103:351-370. 



www.manaraa.com

 

26 
 

Helly, JJ, Levin LA.  2004.  Global distribution of naturally occurring marine hypoxia on 
continental margins. Deep-Sea Research Part I-Oceanographic Research Papers. 
51:1159-1168. 

 
"Illinois Nutrient Loss Reduction Strategy." Illinois Nutrient Loss Reduction Strategy. 

Environmental Protection Agency, n.d. Web. 25 Mar. 2015.  
 
Jacinthe, P.A, W.A. Dick, and L.C Brown. 1999. Bioremediation of nitrate contaminated 

shallow soils using water table management techniques: nitrate removal 
efficiency. Trans. ASAE 42: 1251-1259.  

 
Jacobs, T.C., and J.W. Gilliam. 1985. Riparian losses of nitrate from agricultural drainage 

waters. J. Environ. Qual. 14:472–478. 
 
Kanwar, R.S., D.E. Stolenberg, R. Pfeiffer, D.L. Karlen, T.S. Colvin, and W.W. 

Simpkins. 1993. Transport of nitrate and pesticides to shallow groundwater 
systems as affected by tillage and crop rotation practices. p. 270–273. In Proc. 
Natl. Conf. on Agric. Res.to Protect Water Quality. 

 
Keeney, D.R., and T.H. DeLuca. 1993. Des Moines River nitrate in soils in relation to 

watershed agricultural practices: 1945 versus 1980s. J. Environ. Qual. 22:267–

272.  

Lacey, Corey G., and Shalamar D. Armstrong. "In Field Measurements of Nitrogen 
Mineralization Following Fall Applications of N and the Termination of Winter 
Cover Crops." Air, Soil and Water Research (2013): n. pag. Department of 
Agriculture, Illinois State University, Normal, IL, USA., 31 Jan. 2013. Web. 27 
Feb. 2015. 

 
Lotter, D.W., R. Seidel, and W. Liebhardt. 2003. The performance of organic and 

conventional cropping systems in an extreme climate year. Am. J. Altern. Agric. 
18:146-154.  

 
Malcolm, S.A., M. Aillery, and M. Weinberg. 2009. Ethanol and a changing agricultural  

landscape. Econ. Res. Rep. 86. (accessed 18 Jan 2013). 
 
Moorman, Thomas B., Jerry L. Hatfield, and Rameshwar S. Kanwar. "Herbicide and 

Nitrate in Surface and Ground Water: Results from the Iowa Management Systems 
Evaluation Area." Iowa State University. United States Department of Agriculture, 
13 Apr. 2004. Web. 16 June 2015. 

 
Overdahl, Curtis J., George W. Rehm, and Harvey L. Meredith. "Fertilizer Urea." 

Nitrogen : Nutrient Management : Agriculture. University of Minnesota 
Extension, n.d. Web. 17 July 2015. 

 



www.manaraa.com

 

27 
 

Paine, L.K., and H. Harrison. 1993. Review: The historical roots of living mulch and 
related practices. Hortic. Tech. 3:137-143 

Randall, G.W., J.A. Vetsch, and J.R. Huffman. 2003. Corn production on a subsurface-
drained mollisol as affected by time of nitrogen application and nitrapyrin. Agron. 
J. 95:1213–1219. 

 
Randall, G.W., and J.A. Vetsch. 2005. Corn production on a subsurface-drained mollisol 

as affected by fall versus spring application of nitrogen and nitrapyrin. Agron. J. 
97:472-478 

 
Reeves, D.W., C.W. Wood, and J.T. Touchton. 1993. Timing nitrogen applications for 

corn in a winter legume conservation-tillage system. Agron. J. 85:98-106 
 
Reeves, D. W. 1994. Cover crops and rotations. pp.125–172. In: J.L. Hatfield and B.A. 

Stewart (eds.) Crops Residue Management. Advances in Soil Science. Lewis 
Publishers, Boca Raton, FL. 

 
Rabalais, N.N., R.E. Turner, and W.J. Wiseman. 2002. Gulf of Mexico hypoxia, A.K.A. 

“The Dead Zone”.Annu. Rev. Ecol. Syst. 33:235-263. 
 
Renaud, M.L. 1986. Hypoxia in Louisiana coastal waters during 1983: implications for 

fisheries. Fish. Bull. 84:19-26 
 
"Riparian Buffers." Riparian Buffers. North Carolina State Unversity, n.d. Web. 03 June 

2015.  
 
Romkens, M. J. M., S. N. Prasad, and F. D. Whisler. 1990. Surface sealing and 

infiltration. Pages 127-172 in M. G. Anderson and T. P. Butt, editors. Process 
studies in hillslope hydrology. John Wiley and Sons, Ltd 

 
Sattell, R., R. Dick, D. Hemphill, J. Selker, F. Brandi-Dohrn, H. Minchew, M. Hess, J. 

Sandeno, and S. Kaufman. "Nitrogen Scavenging: Using Cover Crops to Reduce 
Nitrate Leaching in Western Oregon." OSU.edu. Oregon State University 
Extension Service, Oct. 1999. 

 
Schmitt, M. A., and G. W. Rehm. "Soils, Fertilizer and Agricultural Pesticides." What 

Happens to Anhydrous Ammonia in Soil† (1993): 51-58. Michigan State 
University. Web. 21 Apr. 2015.  

 
Scharf, P.C. "Best Management Practices for Nitrogen Fertilizer in Missouri." Nutrient 

Management. Missouri University Division of Plant Sciences, Aug. 2006. Web. 25 
Mar. 2014. <Best Management Practices for Nitrogen - Nutrient 
Management.htm>. 

 



www.manaraa.com

 

28 
 

Scharf, P.C., W.J. Wiebold, and J.A. Lory. 2002. Corn yield response to nitrogen 
fertilizer timing and deficiency level. Agron. J. 94:435-441 

 
Smiciklas, K.D., A.S. Moore, and J.C. Adams. 2008. Fertilizer nitrogen practices and 

nitrate levels in surface water within an Illinois watershed. J. Agron. Educ. 37:14-

19 

Smith, R.A., G.E. Schwarz, and R.B. Alexander. 1997. “SPARROW Surface Water-

Quality Modeling Nutrients in Watersheds of the Conterminous United States: 

Model Predictions for Total Nitrogen (TN) and Total Phosphorus (TP).”  

Spieles, D.J., Mitsch, W.J., 2000. The effects of season and hydrologic and chemical 

loading on nitrate retention in constructed wetlands: a comparison of low- and 

high-nutrient riverine systems. Ecol. Eng. 14, 77–91. 

Thorup-Kristensen, K., J. Magid, and L. S. Jensen. 2003. Catch crops and green manures 
as biological tools in nitrogen management in temperate zones. Pages 227-302 in 
Advances in Agronomy, Vol 79. ACADEMIC PRESS INC, San Diego. 

 
Turner, R. E. and N. N. Rabalais (1994). "Coastal eutrophication near the Mississippi 

river delta." Nature 368: 619-621US EPA. 2010. Water quality assessment and 
total maximum daily loads information: National summery of state information. 
The U.S. Environmental Protection Agency.  

 
United States Department of Agriculture. DENITRIFYING BIOREACTOR (2012): n. pag. 

NATURAL RESOURCES CONSERVATION SERVICE INTERIM 

CONSERVATION PRACTICE STANDARD. Jan. 2012. Web. 27 June 2015.  
 
U.S. Dept. of Agriculture, Agricultural Research Service, Sharpley, Andrew N. "What 

Are Best Management Practices." Best Management Practices to Minimize 

Agricultural Phosphorus Impacts on Water Quality. University Park, Pa.?: 2006. 

1-3. 

U.S. Dept. of Agriculture, Econ. Res Serv, Ribaudo, Marc, Jorge Delgado, LeRoy 
Hansen, Michael Livingston, Roberto Mosheim, and James Williamson. Nitrogen 
In Agricultural Systems: Implications For Conservation Policy. ERR-127. 
September 2011. 

 

Vetsch, J.A., and G.W. Randall. 2004. Corn production as affected by nitrogen 

application timing and tillage. Agron. J. 96:502-509 

Woli, K. P., M. B. David, R. A. Cooke, G. F. McIsaac, and C. A. Mitchell. 2010. 

Nitrogen balance in and export from agricultural fields associated with controlled 

drainage systems and denitrifying bioreactors. Ecol. Eng.36(11): 1558-1566.  



www.manaraa.com

 

29 
 

Wortmann, Charles. "Nitrogen Management for Water Quality Protection in the 
Midwest." University of Nebraska–Lincoln.edu. Heartland Regional Water 
Coordination Initiative, 2004. Web. 17 July 2015.  

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

30 
 

CHAPTER III 

 

EFFICACY OF WINTER COVER CROPS TO IMPACT THE DISTRIBUTION OF 

SOIL INORGANIC N FOLLOWING FALL APPLIED  

ANHYDROUS AMMONIA 

Abstract 

The coupling of cover crops, along with spring application of nitrogen has shown 

improved nitrogen efficiency in corn production systems. However, studies have shown 

that only 50% of central Illinois farmers practice spring application of nitrogen. 

Therefore, the objective of this research was to determine the efficacy of winter cover 

crops to impact the distribution of soil inorganic N following fall applied anhydrous 

ammonium. The experimental site was located at the Illinois State University Research 

and Teaching Farm in Lexington, IL. The treatments consisted of a control, zero control 

and three cover crop treatments, daikon radish, cereal rye and a cereal rye/daikon radish 

mix. All treatments received a fall application of 200 kg N ha-1 in the form of anhydrous 

ammonia. Soil samples were collected in the spring at four separate depths and were 

analyzed for inorganic N. At the 0-5cm depth, we determined that tillage radish resulted 

in 18% greater soil NO3
- relative to the control.  In the environmental depth of 20-80cm, 

we observed that fall applying N into a living cover crop resulted in 35% (Cereal Rye) 

and 22% (Daikon Radish) less soil NO3
- when compared to the control. 
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After four consecutive years of establishing a cover crop, corn uptake and yield data were 

collected. On average the addition of cereal rye and daikon radish treatments increased 

total crop uptake by 20% or 67.10 kg ha-1. Consequently, sampling at harvest 

demonstrated the capacity of the monoculture cover crop species to increase the crop 

yielding potential by 6% or 0.8 Mg ha-1 relative to the control. Over a four year period, 

winter cover crops reduced nitrate leaching and stabilized a greater concentration of soil 

NO3
- in the agronomic depths, relative to the control, following fall applied N. The 

results of this study also suggest that cover crop inclusion into a fall applied system has 

the potential to advance nitrogen use efficiency, yield and profitability. 

Introduction 

The application of nitrogen is essential to produce high yielding cropping systems 

necessary to meet the needs of the continually growing population. The manufacture of 

industrially fixed nitrogen (Haber-Bosch) is advantageous for corn production within the 

MRB (Wortmann et al., 2004). However, due to the excessive use of such products, 

agriculture is considered one of the major sources of N loading to surface waters. Randall 

and Vetsch conducted a 7 year study in Michigan to investigate the impact of N timing on 

nitrate leaching via subsurface flow. Similar annual N losses were documented when 

directly comparing fall versus spring N management strategies (Randall et al., 2003). 

However, in a year (1999) with abnormally high temperature and precipitation values, 

spring application increased corn yield by 25% and reduced NO3-N loss compared with 

fall application across four various tillage systems (Vetsch and Randall, 2004). The 

results from that study determined that spring N application reduced NO3-N leaching by 

14% compared to fall (Randall and Vetsch 2005). Despite N loss potential and decreased 
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corn yield, in some areas of the MRB approximately 50% of the nitrogen fertilizer is still 

applied in the fall (Smiciklas et al., 2008).  

The connection between nitrate loss from agriculture fields and the eutrophication 

(hypoxia) in the Gulf of Mexico has become inherently clear (Alexander et al., 2000). 

According to Goolsby the amount of nitrate loading delivered to the Gulf of Mexico has 

nearly tripled since the 1950's (Goolsby et al., 1999). The Mississippi River annually 

transports 1.57 million metric tons of NO3
- to the Gulf of Mexico. Multiple studies 

approximate up to 81% of the total nitrogen flux are a derivative of agriculture. Leachate 

as subsurface flow and runoff as overland flow have been directly linked to 63% of the 

total, while atmospheric deposition (deposition of nitrous oxides from continuous 

consumption of fossil fuels) contributes about 18% of the 1.57 million metric tons 

(Alexander et al., 2000). Traditional cultural practices that followed the general precedent 

of applying extra units of N based upon given field historical yield levels will no longer 

be economically feasible, nor will it be acceptable to obtain new environmental 

objectives set by the EPA (Camberato, 2012).  

The integration of cover crops into a conventional cropping system may serve to 

provide and conserve N for grain cash crops and reduce leaching potential. The inclusion 

of winter annual cover crop species into a spring N management system has been proven 

to reduce the leaching potential and improve N use efficiencies (Ditsch and Alley, 1993). 

Winter annual cover crop species have the capacity to absorb residual N, naturally 

mineralized N, and N added in the form of inorganic fertilizers, inhibiting loss via the 

three primary loss pathways (Thorup-Kristensen et al., 2003). McCracken et al., (1994) 
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observed that cereal rye demonstrated the ability to hold nitrate concentrations at nearly 

zero kg N L-1 over the fall, winter and early spring.   

In addition to NO3-N reduction potential; studies have shown that cover crops can 

improve overall N use efficiency and subsequent crop grain yields. Lotter et al., (2003) 

conducted a long-term field study in Pennsylvania documenting yield differences in 

organic versus conventional systems. Lotter found that when drought conditions are 

experienced, an organic corn-soybean crop rotation coupled with a cover crop would out-

yield the conventionally produced crop grown without a cover crop present. Reeves et al., 

(1993) reported based on multiple linear regression models, the maximum grain yields 

were obtained with a decreasing rate of application throughout the duration of the study. 

The correlation between cover crop inclusion and corn grain yield within the Midwest is 

not well documented under a fall applied N management system. There is a dearth of 

knowledge in regard to the relationship between certain cover crop species and the 

efficacy of fall applied N in a commercial practice.  

Therefore the objectives of this study are to (i) quantify the N uptake capacity of 

cereal rye, daikon radish and a cereal rye/daikon radish mixture to sequester residual and 

fall applied nitrogen (ii) evaluate the ability of different cover crops to reduce nitrate 

leaching following the fall N application (iii) determine the capacity of different cover 

crops to impact subsequent cash crop uptake and yield. This study will allow for the 

assessment of the impact of different cover crop species on nitrate leaching and fall grain 

yields following fall N application into a living stand of cover crops. 
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Materials and Methods 

The experimental site was located at the Illinois State University agriculture 

research farm in Lexington, Illinois. The predominant soil type that exists within the 

study site is Drummer El Paso silty clay loam. This soil type is poorly drained, and 

contains a slope of 0-2%. The cropping history of the field has been continuous corn (Zea 

mays L.) for the last 8 years to support silage production, and converted to a 

commercially harvested grain practice at the end of the 2013 growing season. The 

experimental location (54.88 m. in width east to west, 129.57 m. in length north to south), 

was divided into a total of 21 (.5 acre, .202 ha) plots. The research site was arranged in a 

complete randomized block design; with three replications of each treatment. The N rate 

chosen for this study was the suggested MRTN (Maximum return to Nitrogen) of 200 kg 

N ha-1for central Illinois developed by the N rate calculator (Iowa State University).  

Research variables:  

- Nitrogen application rate (200 kg ha-1).  

- Treatments- control (no cover crops), daikon radish (Raphanus sativus L.), 

cereal rye (Secale cereal L.) and a daikon radish/ cereal rye blend. 

These independent variables were designated to determine the effects of cover crops on 

the distribution of inorganic N within the soil profile prior to cash crop planting. Also 

observed was the capacity of the cover crop to impact the total N uptake at critical growth 

stages and overall grain yield (dependent variables).   

Cultural Practices 

For application purposes, the study followed major agricultural practices within 

the MRB. Application dates were based on an annual basis due to in-season weather 
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variability. An early maturity corn hybrid (2,620 Growing Degree Days, GDD) was 

planted in the month of May (2014 and 2015) with a 12 row John Deere planter at 85,250 

seeds per hectare. The row spacing used was 76.2 cm, which is the predominant spacing 

used within the region. In-season weed control was achieved with a Glyphosate herbicide 

application before the corn reached the eighth vegetative stage (V8). In September (2014-

2015) the crop was commercially harvested once it reached maturity; moisture at harvest 

was 20%. After harvest was completed, the cover crop treatments were drilled into 

existing crop residue from conventional harvesting practices. The cover crop seeding 

rates used were developed by the sustainable agriculture research and education program. 

 

Table 1 

Cover Crop Seeding Rates 

Note. Data gathered from the Sustainable Agriculture Research and Education Program 
(2015) 

 

The application of nitrogen occurred once the average daily soil temperature fell below 

10°C. The N source was applied directly into a living stand of cover crops in the form of 

anhydrous ammonia prior to the primary crop growing seasons (Figure 1).  

Cover Crop Species Land Area 

(Hectare) 
Seeding Rate 

(kg/ha-1) 

Kg. Seed 

needed 

Cereal Rye 0.61 67.2 41.0 

Daikon Radish 0.61 6.70 4.10 

Cereal Rye (85%)/Daikon 

Radish (15%) 

0.61 56.1 84.1 



www.manaraa.com

 

36 
 

 

 

 

 

 

 

 

 

 

Throughout the duration of the study, daikon radish plants winter terminated in 

December from subfreezing temperatures and vegetative desiccation. In the spring, 

chemical termination of the cereal rye was accomplished using a non-selective herbicide 

(Glyphosate and 2, 4-Dichlorophenoxyacetic acid) to eradicate the cover crop stand 

approximately two weeks before the anticipated planting of the cash crop. Seedbed 

preparation prior to corn planting was achieved with a soil finisher upon the complete 

necrosis of the cover crop.  

Plant Sampling 

  Representative cover crop samples were obtained using a random selection 

process. Within each treatment, four 0.6858 m2 quadrants were collected to create a 

composite cover crop sample. This sampling technique was modified from a method 

developed by Dean and Weil in 2009. Cover crop growth was documented and sampled 

in both the fall and spring seasons. The above ground biomass was sampled within each 

of the cover crop treatments; no samples were collected from either the control or zero 

Figure 1. Fall application of anhydrous ammonia into a living cover 

crop stand 
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control. All of the samples were oven dried at 60ºC, weighed and ground to pass through 

a 1-mm. sieve. Total percent nitrogen determination is achieved using a dry combustion 

method; a 0.1000 g. sample was analyzed via LECO FP-528 N Analyzer. Dry weight of 

each sampling quadrant was quantified and used to determine overall biomass and total 

nitrogen uptake. Nitrogen uptake was calculated by multiplying %N by total biomass (kg 

ha-1). Growing degree days (GDD) were calculated for each growing season, to correlate 

cover crop biomass and N uptake with trends observed in soil distribution and subsequent 

crop uptake and yield. To calculate GDD, a base of 0°C was used; the calculation for 

winter annual crops was derived from Montana State University (Miller et al., 2001). 

Cash crop samples were taken at critical development stages throughout the 

growing season. The growth stages and sampling points that were considered critical are 

based upon previously conducted research involving nutrient uptake and total N (V6, 

V12, VT and R6). Population density was conducted twice within each treatment in a 

random fashion during each critical growth stage sampling. One one-thousandth of an 

acre was represented using a 5.334 m constant, from this measurement two whole plant 

samples from each treatment were procured and analyzed collectively. Reproductive 

growth stage samples were further divided into sample subsets (grain, cob, lower stalk, 

and the remainder of the plant). Corn grain yield and moisture content data were analyzed 

after the completion of each harvest season. Yield was calculated using weights collected 

from a verified weigh wagon, those weights were then corroborated by the local grain 

cooperative. The samples were oven dried at 60ºC, weighed and ground to pass through a 

1-mm sieve. Total percent nitrogen determination is achieved using a dry combustion 

method; a 0.1000 g sample was analyzed via LECO FP-528 N Analyzer. Total N data 
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was used to establish nitrogen uptake for each treatment. Nitrogen uptake was calculated 

by multiplying %N by total biomass (kg ha-1).  

Soil Sampling 

Soil samples were taken both in the spring prior to the cash crop growing season 

and in the fall post-harvest to document the effect of cover crops on inorganic N 

distribution. To properly depict the distribution of N within the profile, the samples were 

collected to a depth of 80 cm. Two soil cores were randomly collected within each 

treatment using a hydraulically driven probe. The soil cores were subdivided into four 

sections of 0-5, 5-20, 20-50, and 50-80 cm. The 0-5 and 5-20 cm cores were designated 

the agronomic depth (rooting zone), and the 20-50 and 50-80 cm cores were labeled as 

the environmental depth (below the rooting zone and near pattern tile drainage). The soil 

samples were oven dried at 60ºC, and ground to pass through a 1-mm sieve for analysis. 

A five gram sample was shaken with 50 ml of a 0.01 M CaCl2 solution for 30 minutes to 

allow for proper amalgamation. The mixture was then separated at 1500 RPM using 

centrifugal force; after adequate separation the solution was filtered using Whatman #42 

filter paper and analyzed using LACHAT flow injection analysis auto sampler 

calorimetrically. Total soil inorganic nitrogen was determined for each depth using a bulk 

density of 1.21g cm-3. All procedures and instrumentation used for the duration of this 

study are widely accepted and documented means of data analysis within the scientific 

community. 

Statistical Analysis 

 The research formatting used for the duration of this study was a complete 

randomized block (CRB) design with three replications. Statistical analysis of NO3-N and 
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NH4-N concentrations across depth (CRB design), cover crop N uptake and biomass were 

conducted using ANOVA as calculated by SAS PROC general linear model (GLM). 

Crop N uptake and yield analysis was conducted using CRB modeled ANOVA as 

calculated by PROC GLM. Cover crop treatments were considered fixed effects, while 

block was treated as a random variable. REGWQ (Ryan-Einot-Gabriel-Welsch Q test) 

comparisons test was used to compare treatments to each other and to the control. 

Orthogonal contrast was used to determine yield significance between treatments and 

application rates. A P level of <0.05 was used to determine significant differences 

between treatments. 

Results and Discussions 

Environmental Conditions 

 The average annual ambient air temperatures for 2011-2015 were 10.7, 

12.6, 10.0, 8.7 and 10.6°C, respectively (Fig. A-1). The mean temperature for those years 

were comparable to the 30 year average of 10.8°C; however, the variance on a monthly 

basis was considerably greater. Ambient air temperature in 2011 followed the general 

weather patterns of the 30 year average; however, the mean monthly temperature for the 

first 6 months were below the 30 years values. Warmer ambient monthly temperatures 

did not occur until the months of October, November and December 1.0, 2.0 and 3.4°C 

warmer than the 30 year average, respectively. These warmer temperatures trended into 

the 2012 season until the month of April. Average monthly ambient air temperatures in 

2012 were significantly warmer than the 30 year average with January, February, March, 

April, May and December 3.0, 2.9, 8.3, 1.0, 2.5 and 4.0°C warmer relative to the 30 year 

average, respectively. In contrast, the 2013 season generated below average ambient air 
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temperatures for February, March, April, June, July, August, November and December 

0.6, 4.2, 1.6, 0.4, 1.2, 0.5, 2.1, 1.9°C lower than the 30 year regional average, 

respectively.  

Annual precipitation totals in 2011 and 2013 were greater than the 30 year 

average; however in 2012, rainfall values were substantially below the regional values 

(Fig. A-2). Annual precipitation in 2011 was 95.3 mm greater than the 30 year average; 

all monthly rainfall totals were above average with the exception of August, September 

and October. Annual precipitation in 2012 was 212.3 mm less than the 30 year average; 

the months of January, February, March, April, May, June, July, November and 

December registered precipitation values 21.5, 18.6, 42.3, 20.3, 53.9, 57.6, 61.2, 52.8 and 

9.3 mm below average, respectively. Annual precipitation in 2013 was greater than the 30 

year average; the months of January, February, April, May and October had 332.1, 83.0, 

35.8, 63.1, and 7.1 mm greater precipitation compared to the 30 year average for the 

region, respectively.   

In 2014, the average ambient air temperatures were considerably below the 

aforementioned 30 year average temperature. Annually, 2014 was 2.1 ◦C cooler than the 

30 year average. The lowest recorded temperatures observed throughout the duration of 

the study were in the months of January and February 2014, -8.9 and -9.0 ◦C; 5.1 and 6.9 

◦C lower than the regional average, respectively. However, the months to follow were 

consistent with the 30 year values. April-October recorded average temperatures within 

1°C of the average regional temperature.  

Annual precipitation in 2014 was 166.9 mm below the 30 year average of 972.8 

mm. However, during the cash crop (corn) growing season, the average rainfall total was 
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similar to the 30 year average. The total precipitation received throughout the months of 

May-September, was 3.6 mm less than the regional average.  

Ambient air temperatures in 2015 followed the general trends that were observed 

during the initial year of the study in 2011. The average temperature in 2015 was 10.6°C, 

which was only 0.1°C lower than the recorded average temperature in 2011. Both years 

were comparable to the 30 year average temperature. However, during the late winter and 

early spring months in 2015, the ambient air temperatures were significantly cooler than 

the 30 year average with January, February and March -0.8, -6.1 and -1.9°C cooler 

relative to the 30 year average, respectively. 

 In 2015, annual precipitation totals were approximately 1,057 mm, thus receiving 

84 mm more than the 30 year regional average. This year marked the second highest 

precipitation total throughout the duration of the study, second only to 2011, which 

recorded 1,068 mm of total precipitation. The largest concentration of total precipitation 

came in the form of rainfall during the summer months, May, June, July and August 

receiving 23.5, 78.5, 40.9 and 9.9 mm more than the regional 30 year averages, 

respectively. Ensuing average rainfall values in the fall, the winter months of November 

and December recorded uncharacteristically warm temperatures. This temperature flux 

supplemented large amounts of rainfall that are atypical for the region. In the months of 

November and December, 251.7 mm of total precipitation was recorded, 112.9 mm 

greater than the regional average. 

Cover Crop Nitrogen Uptake and Biomass Production 

The various weather patterns experienced throughout the 2011-2015 cover crop 

seasons (September-March/April) allowed for data collection to occur under diverse 
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growing conditions. Under these conditions, cover crop performance was evaluated for 

biomass production and N sequestration potential. For the intended purposes of this 

study, the N scavenging ability of the aforementioned cover crop treatments were 

documented to determine capacity to stabilize fall applied N.  

Sampling the cover crop in both the fall and spring throughout the growing season 

for four consecutive years (2011-2015), resulted in a significant interaction between year 

sampled and cover crop species for both biomass and total N uptake (Table A-5) (Table 

A-6). In the 2011-2012 cover crop growing season, 2547 growing degree days (GDD) 

were experienced (Table A-2); this being the most accumulated in one growing season 

throughout the duration of the study. Due to seasonally warm winter months experienced 

during the cover crop growing season, (November, December and January 2.0, 3.4 and 

3.0°C warmer than regional 30 year averages) senescence of the daikon radish was not 

achieved until early January. In conjunction with abnormally high ambient air 

temperatures, precipitation values were also greater than the regional average. During 

that seven month timeframe, 396 mm of total precipitation occurred, 171 mm of that total 

occurred December-March succeeding the application of anhydrous ammonia in 

November. Thus, allowing for the possibility of early nitrification to occur, resulting in 

high biomass and N uptake values for the various treatments due to greater plant 

available nitrogen. During the 2011-2012 growing season, the daikon radish treatment 

accumulated 6561.9 kg ha-1 dry matter and absorbed 226.8 kg N ha-1. Relative to daikon 

radish, the cereal rye treatment accumulated significantly less (3906.5 kg ha-1) dry matter, 

while the total N uptake (188.1 kg N ha-1) was less, the difference was insignificant 

(Table A-3) (Table A-4). The cereal rye/daikon radish mixture in 2011-2012 produced 
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the least amount of (2363.7 kg ha-1) dry matter and total N (110.6 kg N ha-1). The 

reduction in biomass observed for the mixture in comparison to either the daikon radish 

and cereal rye treatments was significant, while the reduction in uptake was only 

significant relative to the daikon radish treatment.      

In contrast to the previous season, the 2012-2013 cover crop growing season 

(September 2012-April 2013) had below average monthly temperatures with the 

exception of December and January. Below average temperatures that occurred 

throughout the growing season reduced the total GDD experienced (1845) (Table A-2). 

Despite reduced GDD, substantial early fall precipitation created conditions conducive 

for residual soil N to be assimilated within the cover crop biomass prior to the ambient air 

temperature reaching the 0°C threshold for cover crop growth to continue. However, in 

2012-2013, we observed a significant reduction in both daikon radish biomass (3707.5 kg 

ha-1) and total N uptake (131.9 kg N ha-1) relative to the previous growing season (Table 

A-3) (Table A-4). Conversely, due to rigorous spring growth, a later termination date and 

a large quantity of residual N remaining from the 2012 drought (May-July), biomass 

production was equivalent to the previous growing season for both cereal rye and the 

mixture. However, in comparison to the previous year, the 2012-2013 cereal rye 

produced significantly a greater total N concentration (249.9 kg N ha-1). Coinciding with 

an annual increase relative to the previous growing season, cereal rye demonstrated the 

ability to significantly increase the total N concentration and biomass production in 

comparison to daikon radish treatment. In 2012-2013, the increase in cereal rye biomass 

production and total N concentration relative to the daikon radish could be attributed to 

limited fall GDD. Similarly the mixture also demonstrated the capacity to increase the 
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cover crop N uptake (128.1 kg N ha-1) in 2012-2013, however, the difference was 

insignificant. Diminished fall growth potential demonstrated how temperature deficit is 

more influential on the daikon radish treatments. This was evident because the cereal rye 

treatment and the mixture; which was seeded at 85% cereal rye, both experienced spring 

growth and recorded an increase in N uptake and biomass totals relative to the previous 

year.   

 The 2013-2014 cover crop growing season displayed cooler ambient air 

temperatures, with January (-8.9 °C) and February (-9.0 °C) being the coldest months on 

record throughout the duration of the study. The below average regional temperatures 

effectively condensed the growing season in comparison with the previous two growing 

seasons, with a total of 1679 GDD accumulated during the months of September-April 

(Table A-2). Annual anhydrous ammonia application occurred mid-December; however, 

minimal N was assimilated within the cover crop biomass due to the abnormally cold 

temperatures and low precipitation. Due to these environmental conditions, both cover 

crop biomass production and total N uptake data yielded significantly less for all 

treatments in comparison to the previous two seasons (Table A-3) (Table A-4). Early 

senescence of the daikon radish led to a significant reduction in biomass production 

(1450.3 kg ha-1) and N uptake (38.2 kg N ha-1). Cereal rye dry matter accumulation 

(706.8 kg ha-1) and total N uptake (35.1 kg N ha-1) in 2013-2014 were significantly 

limited by weather patterns in both the fall and spring. The cereal rye/daikon radish 

mixture had significantly less dry matter (670.2 kg ha-1), while N uptake (32.5 kg N ha-1) 

was similar to the previous season. Minimal biomass production and an early dormancy 

period for the cereal rye and the mixture reduced uptake potential in the fall. Due to cold 
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spring ambient air temperatures, cereal rye development was restricted, which reduced 

the total amount of GDD received and limited spring uptake potential.  

Directly ensuing 2014 grain harvest was the fourth consecutive year of cover crop 

establishment (2014-2015). Due to a productive corn crop, little residual N remained after 

harvest. Rather than succeeding silage, the cover crop was sewn directly into a dense corn 

residue. Monthly ambient temperatures during the growing season (September-April) 

were again well below 30 year regional averages. Similar to the previous growing season, 

seasonally colder temperatures limited the quantity of GDD accumulated in the fall 

(Table A-2). With the fewest fall GDD accumulated, minimal N available for uptake, and 

dense residual ground cover, the daikon radish biomass production (638.39 kg ha-1) 

totaled a significant 66% reduction relative to 2013-2014, while N uptake values (31.90 

kg ha-1) were maintained in comparison to the previous season (Table A-3) (Table A-4). 

Relative to the previous spring seasons, 2015 accumulated the highest GDD total (649). 

As a result, the 2014-2015 season allowed for exponential spring growth of cereal rye; 

which, significantly increased both biomass production (2159.9 kg ha-1) and N uptake 

(107.2 kg N ha-1). Though insignificant, the mixture emulated the cereal rye and 

demonstrated an increase in both biomass (978.3 kg ha-1) and total N uptake (52.3 kg N 

ha-1).  

In order to recognize the trends that occurred, the collective data were averaged 

for each treatment over the duration of the four year study. This allowed direct 

comparison of the average biomass production and total N concentrations for each 

treatment. Sampling the cover crop in the fall and again in the spring two weeks before 

termination, resulted in a significant difference in both total uptake and biomass 
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production between cover crop treatments. We observed above ground biomass 

production (2011-2015) for the monoculture cover crop species, cereal rye and daikon 

radish averaged 3089.7 and 3089.5 kg ha-1, respectively. In comparison to studies 

conducted by Kasper and Bakker 2015, cereal rye biomass production over a four year 

period (2006-2009) averaged 1894 kg ha-1. While a Dean and Weil (2009) study recorded 

daikon radish dry matter totals over a two year period (2003-2004) at multiple locations, 

which averaged 3796 kg ha-1. Although both monocultures produced similar biomass 

over the extent of four year and in comparison to other studies, the cereal rye/daikon 

radish mixture averaged significantly less biomass (1840.2 kg ha-1) throughout the 

duration of the study (Table A-3). Due to weather conditions experienced over the four 

year period, N uptake ranges for daikon radish, cereal rye and the mixture were 32-226 

kg ha-1, 35-250 kg ha-1 and 32-128 kg ha-1, respectively. According to cited literature, in a 

spring applied system (Dean and Weil, 2009; Kasper et al., 2007; Strock et al., 2004) 

cover crop total N uptake ranged from 100-119 kg N ha-1 and 42-78 kg N ha-1 for daikon 

radish and cereal rye, respectively. Within our study, cereal rye demonstrated the ability 

to sequester the highest N concentration in comparison to daikon radish and the mixture 

(Table A-4). In 2011-2015, cereal rye, daikon radish and the mixture averaged N uptake 

values of 145.1, 107.2 and 80.9 kg N ha-1, respectively. The data demonstrated the ability 

of the cereal rye to sequester a significantly greater N concentration than both the daikon 

radish and cereal rye/daikon radish treatments. While significantly less in comparison to 

the cereal rye treatment, the daikon radish treatment was able to significantly increase 

total N concentrations within the cover crop biomass, relative to the mixture. Thus, the 

data suggests that on an annual basis, these cover crop species have to ability to absorb 
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15-100% of the fall N in the Upper Mississippi River Basin, assuming a range of N rates 

applied (200-224 kg ha-1).  

Long-Term Cover Cropping Effects on Spring Soil Nitrogen Distribution 

In order to measure how long-term cover crop integration influences spring soil N 

distribution following a fall N application, soil samples were taken 1-3 weeks prior to 

planting. The precedent for selecting soil sampling dates prior to planting was based upon 

the Illinois Agronomy Handbook’s suggested planting dates for North and Central 

Illinois (April 16th) (Nafziger, 2003). To quantify the data, the soil profile (0-80cm) was 

studied in its entirety; however two principal regions of focus were formed; the 

agronomic depth (0-20cm, zone of root interception and depth of anhydrous ammonia 

application) and the environmental depth (20-80cm; the portion of the soil profile that is 

most susceptible to tile-drainage losses).  

In 2012 following the application of fall anhydrous ammonia, 177mm of 

precipitation occurred in the months of December-March. In conjunction with the 

precipitation, above average ambient temperatures resulted in a prolonged cover crop 

growth period (2547 GDD) with soil temperatures above the 0°C cover crop growth 

threshold (Table A-2). These conditions were conducive for mineralization of any 

organic residue and subsequent nitrification of NH4-N. As a result, in 2012, three weeks 

prior to planting we observed greater soil NO3-N for the control treatment relative to all 

cover crop species. Conventional fall N application without cover crops (Control) 

resulted in a NO3-N content of 274.6 kg ha-1 within the entire soil profile (Fig. A-3). 

While the cereal rye, daikon radish and the mixture recorded comparable cumulative 

NO3-N concentrations of 135.9, 180.4 and 170.2 kg ha-1, respectively. Despite depth, in 
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early spring of 2012, fall applying N directly into a living cover crop stand reduced soil 

NO3-N within the entire 0-80cm depth by a range of 94.2 -138.7 kg ha-1, however, this 

difference was found to be insignificant for all treatments except for cereal rye (Fig. A-4). 

Although there were minimal statistical differences between treatment and year, there 

were major biological differences that correlated with variance found when averaged 

across depth (0-80cm). In 2012, the daikon radish winter killed in January, allowing for 

three months of decomposition to occur. In conjunction with winter senescence, a lower 

C: N ratio could have attributed to similar NO3-N values relative to the control. However, 

at the point of the spring soil sampling, a percentage of the scavenged N remained within 

the organic form as plant residue. This is significant because plant available nitrogen 

(PAN) at the agronomic depth has the potential to increase as the cover crop residue 

continues to mineralize. Within the control treatments, where there is no cover crop 

residue, the potential for inorganic N to increase is minimal. Relative to daikon radish, 

the cereal rye cover crop overwintered and continued to sequester N until chemically 

terminated in the spring. Consequently, a higher percentage of the fall applied N was 

absorbed and assimilated into the cover crop biomass. This translated into a 46% lower 

NO3-N concentration for the cereal rye and the mixture in comparison to the control 

within the agronomic depth (Fig. A-3). While, the addition of daikon radish and the 

mixture also increased NH4-N concentrations within the agronomic depth by an average 

of 15% (Fig. A-5). Despite the environmental conditions following the application of fall 

anhydrous, the integration of cover crop treatments into conventional MRB practices 

substantially reduced the concentration of soil NO3-N within the environmental soil depth 

(20-80cm). This reduction can be attributed to capacity of the cover crop to sequester and 
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assimilate fall applied N, preventing loss via leaching. Spring NO3-N concentrations 

within 20-80cm profile in 2012 were on average 45% greater for the control relative to 

when N was fall applied into a standing cover crop. Similar results were observed by 

Adeli et al., 2001, where broiler litter was fall applied directly into the cereal rye stand, 

which resulted in a 57% decrease in NO3-N leaching at a depth of 60cm with cover crops 

relative to non-cover crop treatments. The 2012 data demonstrates the ability of the cover 

crop to influence the distribution of soil inorganic N, reducing its vulnerability to 

leaching under various conditions.                 

Following the drought experienced during the 2012 cropping season, excess 

residual nitrogen remained within the soil profile. However, the 2013 cover crop season 

was trended by an uncharacteristically high volume of rainfall; within the months of 

January to March, the total precipitation was twice the amount received in 2012. As a 

result of the environmental conditions, the 2013 cover crop growing season was 

effectively reduced by 702 GDD relative to previous season (Table A-2). The substantial 

precipitation received after the application of anhydrous ammonia expedited spring NO3-

N leaching, which was evident within the spring soil sample data. The average NO3-N 

concentrations increased with depth; The 20cm (37.5 kg ha-1) depth resulted in a 

significantly lower concentration than both the 50cm (57.8 kg ha-1) (Ryan-Einot-Gabriel-

Welsch Multiple Range Test (REGWQ), df= 30,  P <0.0001) and 80cm (60.7 kg ha-1) 

(REGWQ, df= 30, P <0.0001) depths (Fig. A-6). Within the entire soil profile, cereal rye 

(98.0 kg ha-1) and the control (160.0 kg ha-1) displayed a significantly reduced NO3-N 

concentration in comparison to daikon radish (199.4 kg ha-1) and the mixture (217.3 kg 

ha-1) (Fig. A-7). The presence of daikon radish in either the mixture or monoculture form 
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demonstrated the ability to increase the overall NO3-N (0-80cm) concentration prior to 

planting in comparison to the control. However, relative to the control, a significant 

portion of the NO3-N was assimilated within the cereal rye residue; thus preventing loss 

via leaching and denitrification, to be slowly returned throughout the growing season as 

the cover crop residue decomposes. This increase in inorganic N for the daikon radish 

could be related to environmental conditions experienced during the cover crop growing 

season, which caused winter senescence of the daikon radish to occur in early December. 

Therefore decomposition of the daikon radish residue was possible during the winter 

months, the additional NO3-N was contributed via mineralization. Berg and 

McClaugherty, 2007 verified that increasing soil N concentrations within a cover crop 

treatment can be attributed to litter mass (above ground biomass) lost or decomposed, 

resulting in a linear increase until the limit value for decomposition has been reached. 

The total observed NO3-N concentrations within the soil profile for daikon radish (199.4 

kg ha-1) and the mixture (217.3 kg ha-1), were greater than the rate of ammonia 

application (200 kg ha-1). Conversely, both the daikon radish and daikon radish/cereal rye 

treatments were unsuccessful in reducing the total NO3-N content that reached the 

environmental depth in comparison to cereal rye. This trend was also observed in a study 

conducted in Maryland (Dean and Weil, 2009) that associated the daikon radish 

decomposition period to increased NO3-N on course textured soils at lower depths. In 

contrast, cereal rye yielded substantially less NO3-N at the agronomic depth, possibly 

attributed to immense spring growth where a significant portion of the potentially 

available N was assimilated within the residue. Despite a wet spring in 2013, fall 

applying N into a living stand of cereal rye also demonstrated the capacity to reduce the 
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concentration of soil NO3-N by 46% within the environmental soil depth. This is a 

substantial observation considering the percentage of farmers that fall apply N, which 

ranges from 25-75% within some regions of the MRB (Randal and Sawyer, 2005; 

Smiciklas et al., 20008; Lemeke et al., 2010; Bierman et al., 2012). 

Following a productive silage crop in 2013, nominal residual nitrogen pools were 

unable to produce sufficient cover crop growth. The 2014 cover crop season was trended 

by exceedingly cold temperatures within the months of January to March, with average 

temperatures 6°C below the 30 year regional average. Lower seasonal ambient air 

temperatures limited GDD accumulation to 1679 (September-April) (Table A-2). Due to 

the lower temperatures experienced in the fall, early December senescence of the daikon 

radish occurred. Subsequent cool spring temperatures potentially reduced cover crop 

mineralization and subsequent soil nitrification, which would have increased total N 

retention at the upper depths and minimized leaching potential. Therefore, at the point of 

spring soil sampling, minimal N movement had occurred and a significant portion of the 

scavenged N remained within the organic form as plant residue. On average, the 2014 

NO3-N concentrations were some of the lowest recorded for all depths throughout the 

four year duration. Relative to the two previous years, 2014 documented significantly less 

NO3-N at both the 20cm (REGWQ, df= 30, P= 0.0462) and 80cm (REGWQ, df= 30, P= 

0.0083) depths, respectively (Fig. A-9). Despite a limited N pool, the presence of cereal 

rye (109.2 kg ha-1), daikon radish (92.0 kg ha-1) and the mixture (66.5 kg ha-1) 

considerably reduced soil NO3-N by a range of 15- 48% (Fig. A-10). This difference was 

found only to be significant relative to the cereal rye/daikon radish mixture. At the upper 

depth both daikon radish and the mixture documented the lowest NO3-N concentrations; 
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this was a trend only observed in 2014. One possible explanation for this deficit is that a 

component of N was undetected, sampling the above ground cover crop biomass only 

depicts approximately 50% of total uptake. According to Sundermeier 2008, dry matter 

accumulation is a 1:1 ratio for above ground/below ground biomass. Another justification 

would be that the daikon radish and the daikon radish/cereal rye treatments experienced a 

greater percentage of the total nitrogen at the agronomic depth being denitrified due to 

location within the field, as the majority of the total N was in the form of NO3-N. Despite 

weather patterns limiting cover crop uptake, at the environmental depth, a reduction in 

NO3-N was observed wherever a cover crop treatment was present. Both daikon radish 

and the mixture on average reduced NO3-N concentrations at the lower depths by 21%, 

while cereal rye remained comparable to the control treatment.  

In September of 2014, the first harvest of corn as a grain crop rather than silage 

was completed. Events of precipitation were frequent and ambient air temperature were 

comparable to the regional 30 year average. Grain production in the 2014 season 

established comparatively high yields for McLean County and the surrounding areas. 

Directly ensuing harvest was the establishment of the cover crop treatments. Due to 

minimal precipitation and deficient ambient temperatures experienced in the fall (Late 

September- Early December), winter senescence of the daikon radish was achieved in 

December. Consequently, daikon radish N sequestration capacity was limited relative to 

the previous years. However, due to warmer ambient temperatures in the spring of 2015, 

cereal rye spring growth was exponential having accumulated 649 GDD (spring total), 

relative to 443 GDD in 2014 (Table A-2). Therefore a greater percentage of scavenged 

fall applied N was assimilated within the cereal rye residue and the average soil NO3-N 



www.manaraa.com

 

53 
 

was less relative to daikon radish and the mixture. Despite warmer spring temperatures, 

the inorganic N remained within the zone of fertilizer application. The 20cm (74.5 kg ha-

1) depth recorded the largest NO3-N content at this depth over the four year period (Fig. 

A-12). In the spring of 2015, two weeks prior to planting, we observed no significant 

differences between cover crops and control treatments (Fig. A-13). However, there was 

a general trend for cereal rye (105.8 kg ha-1) to have less soil NO3-N relative to the 

control, while both daikon radish (178.8 kg ha-1) and the mixture (141.3 kg ha-1) 

increased NO3-N values within the profile relative to the control (126.0 kg ha-1). At the 

agronomic depth, fall applying N directly into a living stand of cereal rye reduced the 

overall soil NO3-N by 21% and increased the concentration of NH4-N by 38%. Relative 

to control, at the agronomic depth, the presence of daikon radish in either form 

(monoculture or mixture) exhibited an average increase of 28 and 79% in NO3-N and 

NH4-N content, respectively. This increase in total inorganic N could potentially be 

attribute to a lower C: N ratio and spring temperatures that facilitated prompt 

mineralization and subsequent nitrification. However, both the daikon radish and daikon 

radish/cereal rye treatments were unsuccessful in reducing the total NO3-N concentration 

within the environmental depth relative to the control. In contrast, the cereal rye 

treatment continued to decrease mobile N by 8% within the environmental depth relative 

to the control, despite environmental conditions which prevented the movement of soil N.         

In order to recognize the general trends that occurred, we averaged the collective 

data for each treatment over the duration of the four year study. This allowed us to 

directly compare the percentage of total NO3-N and NH4-N that was distributed within 

the agronomic and environmental depths of the cover crop treatments comparative to the 
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control. The cereal rye treatment demonstrated the greatest capacity to influence N 

distribution over the four year period. At the agronomic depth, cereal rye on average 

reduced soil NO3-N by 34% and increased the NH4-N concentration by 17% in 

comparison to the control. Relative to the control, cereal rye reduced NO3-N content by 

35% at the environmental depths. The daikon radish/cereal rye mixture exhibited the 

ability to influence N in a similar manner as cereal rye; however, the percent reduction 

was not as noteworthy. Daikon radish demonstrated the capacity to increase both NO3-N 

by 18% and NH4-N on average by 52% within the agronomic depth. Fall applying N 

directly into daikon radish residue resulted in a 22% reduction of total soil NO3-N within 

the 20-80cm portion of the soil profile relative to the control.  

Cover Cropping Effects on Corn Nitrogen Uptake 

In order to quantify the long term effects of cover cropping on a conventional 

crop production system, corn N uptake (Total N) was measured throughout the 2014 and 

2015 corn growing seasons at critical growth stages. The corn biomass and uptake sample 

data, in conjunction with yield data aided in determining how the corn crop reacts 

throughout the growing season when introduced into a long-term cover crop management 

system.  

In 2014, the environmental conditions following spring soil samples (April-June) 

emulated the 30 year regional values; the ambient air temperature was 0.1°C cooler, 

while total precipitation received was 13.7 mm greater. These conditions were conducive 

for soil mineralization and nitrification, with a sufficient nutrient supply available in the 

soil solution early season (V6) crop samples were able to sequester a range of 8-14% of 

the total uptake by the sixth vegetative stage (Fig. A-18). The presence of cereal rye in 
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either in the monoculture or mixture slightly reduced the total N content in comparison to 

control (39.90 kg ha-1). However, the daikon radish treatment (43.56 kg ha-1) 

demonstrated the ability to sequester on average the highest N concentration at V6 

relative to the control (39.90 kg ha-1), cereal rye (31.64 kg ha-1) and the cereal rye/daikon 

radish mixture (29.15 kg ha-1), respectively. Though this difference was insignificant, this 

slight decrease at V6 for cereal rye, could potentially be attributed colder winter 

temperatures, which limited early season mineralization and increased N retention within 

the cover crop biomass. Therefore, the available source of N that was applied as an 

inorganic fertilizer in the fall was sufficient for the corn crop to have reached its total N 

uptake capacity.  

Subsequent to V6 samples, the weather conditions in the months of June and early 

July were similar to the 30 year regional averages; growing conditions continued to be 

ideal for natural soil processes. The second and third crop samples were taken one week 

apart from one another. Both V12 and VT samples were collected in the second-third 

week in July. On average at V12, the addition of a cover crop increased the total N 

content by 20% or 33.0 kg ha-1 relative to no cover crop control. The cereal rye (187.12 

kg ha-1) demonstrated the ability to sequester on average the highest N concentration at 

V12 relative to the cereal rye/daikon radish mixture (159.47 kg ha-1), daikon radish 

(156.70 kg ha-1) and control (134.78 kg ha-1) (Fig. A-18). As a result of the added cover 

crop in 2014, the corn crop was able to sequester a range of 50-58% of the total uptake by 

the twelfth vegetative stage, in comparison to the control which accumulated only 47% of 

the total uptake by this growth stage. The twelfth vegetative growth stage was the first 

documented stage where the addition of a cover crop made a biological impact on the 
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total N concentration within the crop biomass. Until this sampling point, the applied 

fertilizer was sufficient in supplying the crop with the necessary nutrients. Relative to V6, 

the mid-season growth stages potentially utilized mineralized N from the cover crop to 

help supplement the limiting N source. Weather conditions experienced through VT were 

conducive for crop growth, but the regularly saturated soil conditions potentially could 

have advanced leaching and denitrification processes. At VT the addition of either 

monoculture cover crop species increased crop uptake by 16% or 33.5 kg ha-1, however 

no statistical differences were observed (Fig. A-18). At tassel, the cereal rye/daikon 

radish (177.22 kg ha-1) and the control (178.09 kg ha-1) treatments yielded lower total N 

uptake values in comparison to the cereal rye (213.28 kg ha-1) and daikon radish (209.90 

kg ha-1) treatments, respectively.  

The ambient air temperature throughout the remainder of the growing season 

remained consistent with the regional average values; however, the precipitation totals 

following the mid-season samples exhibited a general decline, relative to the 30 year 

averages. In September, once physiological maturity (R6) had been reached, a fourth 

sample set was collected; at the final reproductive stage of crop development, the corn 

plant had ceased to sequester N from the soil solution and has begun to dry down. Similar 

to VT, the absence of a cover crop continued to limit the uptake potential of the corn 

crop. Relative to the control (285.10 kg ha-1), cereal rye (373.26 kg ha-1) and daikon 

radish (309.41 kg ha-1) increased crop uptake at physiological maturity by 24 and 8%, 

respectively. While, at the end of growing season we observed that the addition of the 

cereal rye/daikon radish mixture (274.15 kg ha-1) significantly reduced uptake potential 

relative to cereal rye (Fig. A-18).   
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Air temperatures following the 2015 spring soil samples (April-June) were again 

similar to the 30 year regional values, while total precipitation received was 71.6 mm 

greater. Despite rainfall totals much greater than regional averages, the early season (V6) 

crop uptake potential was not significantly limited in comparison to the previous growing 

season. In 2015, the crop accumulated a range of 10-16% of the total uptake by the sixth 

vegetative stage (Fig. A-19). At V6, both the daikon radish (43.30 kg ha-1) and cereal rye 

(35.36 kg ha-1) treatments increased uptake potential relative to the control (33.22 kg ha-

1). Though this difference was insignificant, this increase at V6 could potentially be 

attributed to the early season weather patterns, which created soil conditions that were 

conducive for soil nitrification, therefore any surplus precipitation could exponentially 

increase leaching potential. With apparent early season loss of the N source applied as 

inorganic fertilizer, inclusion of the daikon radish and cereal rye treatments increased 

crop uptake potential by 23 and 6% at V6, respectively. However, in contrast, the 

addition of the cereal rye/daikon radish mixture decreased uptake in comparison to the 

control treatment (21.92 kg ha-1).  

In the months of June and July (2015), heavily saturated soil conditions increased 

leaching potential, which potentially began to constrain crop growth. Similar to May, the 

months of June and July recorded precipitation totals that were greater than the regional 

averages. Frequent rainfall events created ponding within the field, thus sustaining soil 

moisture levels at or above field capacity. Receiving near record rainfall totals in those 

summer months (2015) created significant differences in crop uptake at V12 relative to 

the previous year (Table A-10). In conjunction with restrictive growing conditions, the 

absence of a cover crop treatment continued to reduce uptake potential in 2015. The 
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daikon radish (130.12 kg ha-1) demonstrated the ability to sequester on average the 

highest N concentration at V12 relative to the cereal rye/daikon radish mixture (119.12 

kg ha-1), control (109.37 kg ha-1) and cereal rye (81.13 kg ha-1) (Fig. A-19). In 

comparison to the control, the addition of daikon radish and the daikon radish mixture 

cover crop treatments increased corn uptake by 16 and 8%, respectively. Similar to V12, 

the VT data displayed significant annual differences (Table A-11); 2014 produced greater 

N concentrations relative to 2015. These annual differences can be attributed to the 

aforementioned weather patterns experienced in June and July. At tassel in 2015, 

continuous precipitation and warmer soil conditions aided in nitrification, thus leaving 

the remainder of inorganic fertilizer vulnerable to be leached below the rooting zone, 

effectively depleting soil N. This was evident in N uptake at VT for the control treatment 

as uptake did not increase from the recorded V12 values. The daikon radish (157.54 kg 

ha-1) and cereal rye (127.41 kg ha-1) treatments demonstrated the ability to sequester on 

average the highest N concentrations at VT relative to the control (113.95 kg ha-1) and the 

cereal rye/daikon radish mixture (93.90 kg ha-1) (Fig. A-19). The addition of the 

monoculture cover crop species, daikon radish and cereal rye increased N concentrations 

at tassel by 28 and 11%, respectively, however, this difference was found to be 

insignificant. Preceding the reproductive stage of the crop, the corn biomass within the 

control treatment had accumulated 50% of the total N. These values coincided with a 

study conducted at the University of Illinois, which determined up to 65% of the total 

crop N uptake is sequestered prior to R1 (Snyder, 2014). This is a substantial observation 

considering in 2015 under adverse growing conditions, the addition of daikon radish 

increased the N concentration prior to R1 to 58% of the total crop uptake.   
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Once physiological maturity (R6) had been reached in September of 2015, a 

fourth sample set was again collected. Environmental conditions experienced in June and 

July continued into the month of August, this significantly reduced N content in 2015 

relative to the previous year (Table A-12). However, in 2015, despite adverse soil 

conditions, the control treatment was able to sequester 50% of the total N concentration 

subsequent to VT. Although there was no significant difference among treatments at R6 

in 2015, the absence of a cover crop (contro1, 229.54 kg ha-1) again reduced the total N 

concentration within the corn biomass relative to the monoculture (cereal rye, 343.67 kg 

ha-1), (daikon radish, 271.28 kg ha-1) cover crop species at the end of the growing season 

(Fig. A-19). Despite continuous large precipitation events, the trend for the monoculture 

cover crop species to increase the N content within the crop continued. In 2015, the 

addition of cereal rye and daikon radish treatments increased average R6 crop uptake by 

25% or 77.94 kg ha-1, relative to the control.  

In order to quantify the general trends that occurred, we averaged the collective 

data for each treatment over the duration of two years (2014 and 2015). This allowed us 

to directly compare the total N concentration that was sequestered within each of the 

cover crop treatments relative to the control. According to cited literature, under a fall 

applied N system utilizing 170 kg ha-1, V6 crop uptake (control treatment) in Iowa ranged 

from 11.9-20.9 kg ha-1 in 2001 and 3.7-14.3 kg ha-1 in 2002 (Licht and Al-Kaisi, 2005). 

In comparison, recorded 2014 and 2015 uptake values for the control treatment were 

39.90 and 33.22 kg ha-1, respectively. At V6 the addition of the daikon radish was the 

only treatment which increased crop uptake potential consistently both year relative to the 

control treatment (Fig. A-20). Both the cereal rye and cereal rye/daikon radish treatments 



www.manaraa.com

 

60 
 

demonstrated the capacity to maintain N uptake over the two year period in comparison 

to the control. Daikon radish, control, cereal rye and the cereal rye/daikon radish mixture 

accumulated 15, 14, 10 and 9% of the total N by V6, respectively. At V12, averaged data 

displayed the no cover crop control treatment reduced crop uptake relative to all cover 

crop species. The control values range from 109-134 kg ha-1, these values coincide with 

multiple studies that reported approximate V12 uptake of a corn crop to be 131 kg ha-1 

utilizing a 224 kg ha-1 N application rate (Girma et al., 2010). The no cover crop control 

treatment accumulated 47% of the total N by V12, in comparison to the addition of either 

daikon radish or the mixture, which increased V12 accumulation to a range of 49-56%. 

VT and R6 trends demonstrated the ability of the monoculture to extend and increase 

uptake potential late into the growing season. At R6 the cereal rye treatment sequestered 

a significantly higher N content than the no cover control, while the daikon radish 

treatment took up a greater concentration than the control, however, the difference was 

found to be insignificant (Fig. A-20).    

Cover Cropping Effects on Corn Grain Yield 

   In 2014, yield was calculated using a weigh wagon and then corroborated with 

weights and percent moisture from the local grain cooperative. However, in 2015, data 

collection was near completion when an unforeseen accident caused the loss of all grain 

yield data. Therefore the 2015 yield data that will be presented will be calculated yield 

based upon R6 grain samples taken approximately one week prior to harvest; the two 

years will be presented and discussed separately. 

Throughout the 2014 growing season the environmental conditions emulated the 

30 year regional values; these conditions were conducive for soil mineralization and 
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nitrification. However, occasionally saturated soil conditions could have possibly 

advanced leaching and denitrification processes. These weather patterns were potentially 

evident in the crop uptake data, displaying later season increases in total N content when 

a cover crop was present. Consequently, sampling at harvest also resulted in a yield 

difference between treatments, however no statistical differences were detected (Table A-

13). In 2014, the control treatment yielded 12.8 Mg ha-1. The absence of a cover crop 

reduced the crop yielding potential in the initial year for commercial grain by 6% relative 

to the monoculture cover crop species, thus resulting in a 0.8 Mg ha-1 decrease in yield 

(Fig. A-21). However, in comparison to other studies that documented cover crop impact 

on corn yield, we observed a yield increase, as the other studies documented either no 

effect or a decrease in yield. The documented decrease in yield was attributed to possible 

allelopathic effects of the rye, poor establishment and differences in soil properties 

(Pantoja et al., 2015; Olson et al., 2010; Moore et al., 2014; Reinbott et al., 2004). Due to 

timely establishment and proper management, we observed an increased yield for both 

the cereal rye and daikon radish treatments, which yielded 13.7 and 13.5 Mg ha-1, 

respectively. On average the cereal rye/daikon radish mixture (12.7 Mg ha-1) yielded the 

lowest, however the reduction in comparison to the control was minimal. The 2014 grain 

yields correlate with the R6 crop N uptake data; the addition of cover crops to a 

conventional system creates a biological impact on the crop and its ability to sequester 

nutrients and translate that into grain production. This coincides with survey data 

collected by CTIC and SARE; according to the survey the addition of a cover crop into a 

conventional cropping systems creates biological yield differences. Averaged survey data 

across the country (1,200 producers) displayed cover crop adoption increased corn yields 
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by 2.1%; this is a consecutive trend observed over the past three years (Cover Crop 

Survey Report, 2015).   

Annual difference between yields were not observed due to the loss of all 2015 

yield data. However, calculated yields based upon collected R6 grain samples display 

similar trends as in 2014. In 2015, we observed ambient air temperatures that remained 

approximate with the regional averages, however, the precipitation totals received during 

May-August were substantially greater. The surplus 153 mm of rainfall that precipitated 

during that time frame created soil conditions that were consistently at or above field 

capacity, which increased the overall leaching and denitrification potential. This was 

evident within the R6 crop N uptake data, as previously mentioned, 2014 total N 

concentrations were significantly greater than those of 2015. Despite that, cereal rye 

(15.4 Mg ha-1) again produced the highest yielding crop in 2015 (Fig. A-22). However, 

calculated yields estimated that the absence of a cereal cover crop only reduced yield by 

0.1 Mg ha-1. In contrast to cereal rye, the addition of either a daikon radish or a cereal 

rye/daikon radish mixture reduced yielding potential by 1.9 and 2.6 Mg ha-1, respectively.  

Conclusion 

This study indicates that long-term cover crop integration positively impacted the 

distribution of spring inorganic N following fall application. The cereal rye treatment 

demonstrated the greatest capacity to influence N distribution over the four year period. 

At the agronomic depth, cereal rye on average reduced soil NO3-N by 34% and increased 

the NH4-N concentration by 46% in comparison to the control. Relative to the control, 

cereal rye reduced NO3-N content by 35% at the environmental depths. The daikon 

radish/cereal rye mixture exhibited the ability to influence N in a similar manner as cereal 
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rye; however, the percent reduction was not as noteworthy. Daikon radish created new 

trends at the agronomic depth, demonstrating the capacity to increase both NO3-N by 

17% and NH4-N on average by 41%. In comparison to the control, fall applying N 

directly into daikon radish residue resulted in a 22% reduction of total soil NO3-N within 

the 20-80cm portion of the soil profile.  

  Each year cold winter weather terminated the daikon radish three months prior 

chemical termination of the cereal rye and cereal rye within the mixture. As the result of 

mineralization and subsequent nitrification, daikon radish had equal or greater soil nitrate 

at the agronomic depth relative to the control, at the time of sampling 3-6 weeks before 

planting. However, the early season release of the inorganic N from the daikon radish 

residue increased the susceptibility to N loss in the spring.  In contrast, both the cereal rye 

and cereal rye within the mixture had less time to decompose and nitrified N was less 

susceptible to loss due to spring precipitation.   

This study has demonstrated that the addition of cover crops to a conventional 

cropping system impacted the concentration of total N at each of the sampled corn 

growth stages. According to cited literature (Snyder, 2014), uptake prior to R1 should be 

near or at 65% of the total; however, this study suggest that at VT the control averaged 

only 57% of the total N, while the addition of daikon radish increased that percentage of 

total N accumulated by VT to 63%. R6, total N content displayed the ability of the 

monoculture cover crop species to extend and increase uptake potential late into the 

growing season. On average the addition of cereal rye and daikon radish treatments 

increased average R6 crop uptake by 20% or 67.10 kg ha-1.  Consequently, sampling at 

harvest resulted in a yield difference between treatments. In 2014, the control treatment 
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yielded 12.8 Mg ha-1. The absence of a cover crop reduced the crop yielding potential in 

the initial year for commercial grain by 0.8 Mg ha-1 relative to the monoculture cover 

crop species, thus resulting in a 6% decrease in yield. Despite weather extremes, the data 

demonstrated that fall applying N into a living stand of cover crops reduced NO3-N 

leaching, stabilized a greater percentage of fall applied N in the agronomic depth, and 

improved the crop uptake efficiency resulted in equal or greater corn yield. 

Multiple years of research have altered the way that producers perceive the use of 

cover crops. However, there is a need for long-term research to better understand the 

impact of cover crops and provide data to better educate producers on how to utilize 

various cover crop species within their current management strategies. As the primary 

focus has been placed on keeping reactive nitrogen from surface waters, little data has 

been compiled in order to see if the inclusion of cover crops is an economically feasible 

option for producers within the MRB. Previously conducted research has proven that 

cover crops have the potential to help meet long-term nitrogen management and 

reduction goals as set by the EPA. However, there is also a dearth of knowledge on the 

efficacy of large scale cover cropping and if the integration of cover crops will satisfy the 

reduction goals by the specific target date of 2025. Furthermore, if the reduction goals are 

not meet, how will government agencies respond and will impending regulations be 

placed on the timing, rate, placement and source of fertilizers used.  
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CHAPTER IV 

APPLIED EFFECTS OF COVER CROPS ON CORN UPTAKE AT CRITICAL 

GROWTH STAGES AND GRAIN YIELD WHEN EMPLOYING  

VARIABLE N APPLICATION RATES 

Abstract 

The inclusion of cover crops into a spring applied nitrogen (N) system has been 

shown to improve nitrogen efficiency, while maintaining crop yields. However, minimal 

research has been conducted on the influence cover crops have on fall applied N. 

Therefore, the objective of this research was to determine the applied effects of cover 

crops on grain yield and crop uptake at critical growth stages when employing alternate N 

application rates. The experimental site is located at the Illinois State University Research 

farm in Lexington, IL. The treatments consisted of a control, daikon radish, cereal rye 

and a cereal rye/daikon radish mixture. Each treatment was further divided into three 

nitrogen rate subplots: 200 kg N ha-1, 145 kg N ha-1 and 90 kg N ha-1applied in the form 

of anhydrous ammonia in the fall. Plant samples were collected at four specific corn 

growth stages (V6, V12, VT and R6). The early season crop within the daikon radish and 

cereal rye treatments absorbed a greater percentage of its total N for the season by V6 

compared to the control. In comparison, the addition of cereal rye significantly (P= 

0.0021) increased the total N content relative to all other treatments at physiological 

maturity. No obvious trend within the rate applied (90, 145 and 200 kg ha-1) was 

observed. In 2014, despite application rate, the absence of a cover crop reduced the
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yield potential by 3-6% relative to cereal rye (P= 0.0323) and the mixture. As a result of 

the increased yield despite rate, the cover crop treatments demonstrated the potential to 

reduce the necessary units of N to reach optimum yield and increase overall economic 

return. Therefore, the results of this study suggest that cover crop inclusion into a corn-

corn rotation has the potential to advance nitrogen use efficiency, yield and profitability.   

Introduction 

Environmental concerns related to improper and excessive use of agricultural 

fertilizers are increasing as more research related to water quality becomes public 

knowledge. Due to this excessive use of industrially fixed nitrogen (Haber-Bosch), 

agriculture is considered one of the major sources of N loading to surface waters 

(Wortmann et al., 2004). The connection between N loading and agriculture has been 

strengthened by traditional cultural practices, which follow the general precedent of 

applying extra units of N based upon given field historical yield levels. While fertilizer 

use efficiency has greatly improved in U.S. agriculture the last 20 years, it is estimated 

that about 30% of N applied to crops is lost through leaching, volatilization, or 

denitrification (Waskom and Bauder, 2014). Due to rising input costs and impending 

government restrictions, the excess use of fertilizers will no longer be economically 

feasible, nor will it be acceptable to obtain new environmental objectives set by the EPA 

(Camberato, 2012). One of the most scrutinized best management practices is timing of N 

application. Studies have shown that timing of N application has a major influence on 

reactive N lost to surface waters. However, a 7 year study conducted by Randall and 

Vetsch directly compared fall versus spring N management strategies; the results 

demonstrated similar losses between the two systems. Conversely, in a year (1999) with 



www.manaraa.com

 

70 

abnormally high temperature and precipitation values, spring application increased corn 

yield by 25% and reduced NO3-N loss compared with fall application (Vetsch and 

Randall, 2004). The results from that study determined that spring N application reduced 

NO3-N leaching by 14% compared to fall (Randall and Vetsch 2005). Despite N loss 

potential and decreased corn yield, in some areas of the MRB approximately 50% of the 

nitrogen fertilizer is still applied in the fall (Smiciklas et al., 2008).   

The inclusion of select species of winter annual cover crop into a conventional 

spring N management system has been shown to improve N use efficiency (Ditsch and 

Alley 1993). These annual cover crops have demonstrated the capacity to absorb residual, 

mineralized and recently applied inorganic fertilizer, inhibiting loss via the three primary 

loss pathways (Thorup-Kristensen et al., 2003). Due to the capacity of the cover crop to 

recycle nutrients, the concept of integrating reduced N rates with a cover crop to augment 

increased fertilizer prices and lower cash market grain prices has been gaining interest. 

Reeves et al (1993) reported based on multiple linear regression models, in the Coastal 

Plains region, the maximum economic return (grain yield) in a winter legume 

conservation tillage system were obtained with a decreasing rate of spring application 

throughout the duration of the study. However, this correlation between cover crop 

inclusion, application rate and corn grain yield within the MRB is not well documented 

under a fall applied N management system. Consequently, there is a dearth of knowledge 

in regard to the relationship between certain cover crop species, application rate and the 

efficacy of fall applied N in a commercial practice.  

Therefore the objectives of this study are to (i) quantify the N uptake capacity of 

cereal rye, daikon radish and a cereal rye/daikon radish mixture to sequester residual and 
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fall applied nitrogen (ii) determine how certain cover crops species influence cash crop 

uptake and yield when employing reduced N application rates. This study will allow for 

the assessment of the impact of different cover crop species on corn uptake efficacy and 

fall grain yields following fall N application into a living stand of cover crops. 

Materials and Methods 

The experimental site was located at the Illinois State University agriculture 

research farm in Lexington, Illinois. The predominant soil type that exists within the 

study site is Drummer El Paso silty clay loam. This soil type is poorly drained, and 

contains a slope of 0-2%. The cropping history of the field has been continuous corn (Zea 

mays L.) for the last 8 years to support silage production, and converted to a 

commercially harvested grain practice at the end of the 2013 growing season. The 

experimental location (54.88 m. in width east to west, 129.57 m. in length north to south), 

was divided into a total of 21 (.5 acre, .202 ha) plots. The research site was arranged in a 

split plot design with block replication; each plot (.5 acre, .202 ha) was further 

subdivided into three subplots, which contained alternate N application rates. The N rates 

chosen for this study were based upon the suggested MRTN (Maximum return to 

Nitrogen) of 200 kg N ha-1 for central Illinois developed by the N rate calculator (Iowa 

State University). Subsequent rates decreased by increments of 55 kg N ha-1, to determine 

the effects of reduced rates and cover crop inclusion. 
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Research variables:  

- Nitrogen application rates (200 kg ha-1, 145 kg ha-1, 90 kg ha-1).  

- Cover crop treatments (control (no cover crops), daikon radish (Raphanus 

sativus L.), cereal rye (Secale cereal L.), and daikon radish/ cereal rye blend). 

These independent variables were designated to establish the capacity of the cover crop 

and alternate nitrogen application rates to impact the total N uptake at critical growth stages 

and overall grain yield (dependent variables).   

Cultural Practices 

For application purposes, the study followed major agricultural practices within 

the MRB. Application dates were based on an annual basis due to in-season weather 

variability. An early maturity corn hybrid (2,620 Growing Degree Days, GDD) was 

planted in the month of May (2014 and 2015) with a 12 row John Deere planter at 85,250 

seeds per hectare. The row spacing used was 76.2 cm, which is the predominant spacing 

used within the region. In-season weed control was achieved with a Glyphosate herbicide 

application before the corn reached the eighth vegetative stage (V8). In September (2014-

2015) the crop was commercially harvested once it reached maturity; moisture at harvest 

was 20%. After harvest was completed, the cover crop treatments were drilled into 

existing crop residue from conventional harvesting practices. The cover crop seeding 

rates used were developed by the sustainable agriculture research and education program.  
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Table 1 

Cover Crop Seeding Rates 

Note. Data gathered from the Sustainable Agriculture Research and Education Program 
(2015) 
 

The application of nitrogen occurred once the average daily soil temperature fell below 

10°C. The N source was applied directly into a living stand of cover crops in the form of 

anhydrous ammonia prior to the primary crop growing seasons (Figure 1).  

 

 

 

 

 

 

 

 

 

Throughout the duration of the study, daikon radish plants winter terminated in 

December from subfreezing temperatures and vegetative desiccation. In the spring, 

Cover Crop Species Land Area 

(Hectare) 
Seeding Rate 

(kg/ha-1) 

Kg. Seed 

needed 

Cereal Rye 0.61 67.2 41.0 

Daikon Radish 0.61 6.70 4.10 

Cereal Rye (85%)/Daikon 

Radish (15%) 

0.61 56.1 84.1 

Figure 1. Fall application of anhydrous ammonia into a living cover 

crop stand 
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chemical termination of the cereal rye was accomplished using a non-selective herbicide 

(Glyphosate and 2, 4-Dichlorophenoxyacetic acid) to eradicate the cover crop stand 

approximately two weeks before the anticipated planting of the cash crop. Seedbed 

preparation prior to corn planting was achieved with a soil finisher upon the complete 

necrosis of the cover crop.  

Plant Sampling 

  Representative cover crop samples were obtained using a random selection 

process. Within each treatment, four 0.6858 m2 quadrants were collected to create a 

composite cover crop sample. This sampling technique was modified from a method 

developed by Dean and Weil in 2009. Cover crop growth was documented and sampled 

in both the fall and spring seasons. The above ground biomass was sampled within each 

of the cover crop treatments; no samples were collected from the control treatment. All of 

the samples were oven dried at 60ºC, weighed and ground to pass through a 1-mm. sieve. 

Total percent nitrogen determination is achieved using a dry combustion method; a 

0.1000 g. sample was analyzed via LECO FP-528 N Analyzer. Dry weight of each 

sampling quadrant was quantified and used to determine overall biomass and total 

nitrogen uptake. Nitrogen uptake was calculated by multiplying %N by total biomass (kg 

ha-1). Growing degree days (GDD) were calculated for each growing season, to correlate 

cover crop biomass and N uptake with trends observed in soil distribution and subsequent 

crop uptake and yield. To calculate GDD, a base of 0°C was used; the calculation for 

winter annual crops was derived from Montana State University (Miller et al., 2001). 

Cash crop samples were taken at critical development stages throughout the 

growing season. The growth stages and sampling points that were considered critical are 
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based upon previously conducted research involving nutrient uptake and total N (V6, 

V12, VT and R6). Population density was conducted twice within each treatment in a 

random fashion during each critical growth stage sampling. One one-thousandth of an 

acre was represented using a 5.334 m constant, from this measurement two whole plant 

samples from each treatment were procured and analyzed collectively. Reproductive 

growth stage samples were further divided into sample subsets (grain, cob, lower stalk, 

and the remainder of the plant). Corn grain yield and moisture content data were analyzed 

after the completion of each harvest season. Yield was calculated using weights collected 

from a verified weigh wagon, those weights were then corroborated by the local grain 

cooperative. The samples were oven dried at 60°C, weighed and ground to pass through a 

1-mm sieve. Total percent nitrogen determination is achieved using a dry combustion 

method; a 0.1000 g sample was analyzed via LECO FP-528 N Analyzer. Total N data 

was used to establish nitrogen uptake for each treatment. Nitrogen uptake was calculated 

by multiplying %N by total biomass (kg ha-1).  

Statistical Analysis 

 The research formatting used for the duration of this study was a split-plot design 

with three replications. Cover crop N uptake and biomass and crop N uptake and yield 

analysis was conducted using split-plot modeled ANOVA as calculated by PROC GLM. 

Cover crop treatments, rate and year were considered fixed effects, while block was 

treated as a random variable. LS-Means and REGWQ (Ryan-Einot-Gabriel-Welsch Q 

test) comparisons tests were used to compare treatments to each other and to the control. 

Orthogonal contrast was used to determine yield significance between treatments and 
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application rates. A P level of <0.05 was used to determine significant differences 

between treatments. 

Results and Discussion 

Environmental Conditions 

Documented weather patterns during the 2013-2015 growing seasons allowed for 

the assessment of cover crop impact on corn N uptake and yield under dynamic weather 

conditions. The average annual ambient air temperatures for 2013-2014 and 2014-2015 

were 8.7 and 10.6°C, respectively (Fig. B-1). The mean temperature for 2014 was well 

below 30 year average of 10.8°C; however, 2015 was comparable with an annual average 

air temperature of 10.6°C.  

In 2014, the average ambient air temperatures were considerably below the 

aforementioned 30 year average temperature. Annually, 2014 was 2.1°C cooler than the 

30 year average. The lowest recorded temperatures observed throughout the duration of 

the study were in the months of January and February 2014, -8.9 and -9.0°C; 5.1 and 

6.9°C lower than the regional average, respectively. However, the months to follow were 

consistently similar to the 30 year values. April-October recorded average temperatures 

within 1°C of the average regional temperature.  

The average temperature in 2015 was 10.6°C, which was only 0.2°C lower than 

the 30 year average temperature. However, during the late winter and early spring months 

in 2015, the ambient air temperatures were significantly cooler than the 30 year average 

with January, February and March -0.8, -6.1 and -1.9°C cooler relative to the 30 year 

average, respectively. 



www.manaraa.com

 

77 

Annual precipitation in 2014 was 166.9 mm below the 30 year average of 972.8 

mm (Fig. B-2). The first 5 months of the year created the majority of that deficit with 

January, February, March, April and May receiving 35.2, 32.3, 21.2, 31.2 and 43.3 mm 

less than the regional averages. However, during the cash crop growing season the 

average rainfall total was similar to the 30 year average. During the months of May-

September, the 2014 total precipitation received was only 3.6 mm less than the regional 

average.  

 In 2015, annual precipitation totals were approximately 1,057 mm, thus receiving 

84 mm more than the 30 year regional average. The largest concentration of total 

precipitation came in the form of rainfall during the summer months, May, June, July and 

August receiving 23.5, 78.5, 40.9 and 9.9 mm more than the regional 30 year averages, 

respectively. Ensuing average rainfall values in the fall, the winter months of November 

and December recorded uncharacteristically warm temperatures. This temperature flux 

supplemented large amounts of rainfall that are atypical for the region; in the months of 

November and December 251.7 mm of total precipitation was recorded, this being 112.9 

mm greater than the regional average. 

Cover Crop Shoot Dry Matter and Nitrogen Uptake 

The various weather patterns experienced throughout the 2013-2015 cover crop 

seasons allowed for data collection to occur under two diverse growing seasons. Under 

these conditions, cover crop performance was evaluated for biomass production and N 

sequestration potential. For the intended purposes of this study, the N scavenging ability 

of the aforementioned cover crop treatments were documented to determine the capacity 

to improve the efficacy of fall applied N at multiple rates of application (90, 145 and 200 
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kg ha-1). No significant three-way interactions were observed between treatment, year, 

and application rate within this study. Hence discussion of the results will focus on two-

way interactions and main effects as appropriate. Sampling the cover crop in both the fall 

and spring (2013-2015), resulted in a significant interaction between year sampled and 

cover crop species for both biomass and total N uptake (Table B-9) (Table B-10). 

However, the rate subsample data for the 2013-2015 seasons were only collected within 

the cereal rye and cereal rye/daikon radish treatments. This is due to the later application 

of anhydrous ammonium to satisfy the recommended soil temperature minimum and the 

early winter senescence of the daikon radish treatment that occurred in 2013. This 

effectively kept us from establishing the multiple N rates prior to senescence of the 

daikon radish.  

The 2013-2014 cover crop growing season displayed cooler ambient air 

temperatures, with January (-8.9°C) and February (-9.0°C) being the coldest months on 

record throughout the duration of the study. Annual anhydrous ammonia application 

occurred mid-December; however, the below average regional temperatures limited cover 

crop growth potential throughout the season, with a total of 1679 GDD accumulated 

during the months of September-April (Table B-2). Early senescence of the daikon radish 

led to limited biomass production (1450.3 kg ha-1) and N uptake (38.1 kg ha-1) at 200 kg 

N ha-1 (Table B-5) (Table B-6). Subsequent spring weather patterns continued to 

diminish growing degree day accumulation. Despite an additional 443 spring GDD, 

cereal rye (200 kg N ha-1) dry matter accumulation (706.8 kg ha-1) and total N uptake 

(35.1 kg N ha-1) were limited relative to daikon radish. In 2013-2014 the mixture 

recorded the lowest biomass (670.2 kg ha-1) and total N (32.5 kg N ha-1).  
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Biomass production for cereal rye at 145 kg N ha-1 (809.3 kg ha-1) and 90 kg N 

ha-1 (798.9 kg ha-1) were greater relative to 200 kg N ha-1 (706.8 kg ha-1), respectively 

(Table B-7) (Table B-8). Similar to biomass, total N content for cereal rye at 145 kg N 

ha-1 (36.2 kg ha-1) and 90 kg N ha-1 (36.1 kg ha-1) were greater relative to 200 kg N ha-1 

(35.1 kg ha-1), respectively. Consequently, there were no correlations observed for rate of 

application with an increase in either biomass or total N content. This could potentially 

be attributed to the restrictive weather patterns that inhibited the cover crop from 

interacting with the N available within the soil solution. By increasing the rate of 

application 38%, from 90 kg N ha-1 to 145 kg N ha-1, the relative biomass production and 

total N for cereal rye increased by a minimal percentage (<1%). This trend was not 

observed within the cereal rye/daikon radish treatments, both biomass and total N content 

increased linearly with application rate. In 2013-2014, the mixture recorded biomass 

totals at 200 kg N ha-1 (670.2 kg ha-1), 145 kg N ha-1 (657.8 kg ha-1) and 90 kg N ha-1 

(586.1 kg ha-1), respectively and total N values at 200 kg N ha-1 (32.5 kg ha-1), 145 kg N 

ha-1  (32.1 kg ha-1) and 90 kg N ha-1 (28.4 kg ha-1), respectively. Increasing the rate by 

38% for the mixture increased biomass production by 11% and total N content by 12%. 

Therefore, rate of application had a greater influence on the cereal rye/daikon radish 

mixture. However, despite application rate, the cereal rye monoculture demonstrated the 

capacity to greater influence average biomass (771.7 kg ha-1) and total N content (35.8 kg 

ha-1) relative to the mixture (638.1 kg ha-1) (31.0 kg ha-1). A trend, which was also 

observed in a study conducted in the Northeastern United States, where they found that 

cereal rye mixtures displayed an intermediate N content relative to pure stands or 

monocultures of cereal rye (Ketterings et al., 2015). This also agrees with Poffenbarger 
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and Weil 2014, who found that cereal rye N content decreases linearly with increasing 

biomass of the additional cover crop species within the mixture.     

Due to a productive corn crop in 2014, little residual N remained after harvest. 

Rather than succeeding silage, the cover crop was sewn directly into a dense corn residue. 

Monthly ambient temperatures (September-April) were again well below 30 year regional 

averages; which, limited the quantity of GDD accumulated in the fall (Table B-2). With 

the fewest fall GDD accumulated, minimal N available for uptake, and dense residual 

ground cover, the daikon radish biomass production (638.4 kg ha-1) totaled a 66% 

reduction relative to 2013-2014 at the 200 kg N ha-1 rate of application, while the N 

uptake value (31.9 kg ha-1) was maintained (Table B-5) (Table B-6). In contrast to the 

previous cover crop season, an extended spring growth period (649 total GDD) allowed 

for exponential cereal rye development; which, significantly increased both biomass 

production (2159.9 kg ha-1) and N uptake (107.2 kg N ha-1) (Table B-3) (Table B-4). 

Though insignificant, the mixture emulated the cereal rye and demonstrated an increase 

in both biomass (978.3 kg ha-1) and total N uptake (52.3 kg N ha-1) relative to the 

previous season. 

The increase in spring GDD in 2014-2015, improved the ability of the cover crop 

species to interact with available soil N (Table B-2). However, similar to 2013-2014, 

there were again no correlations observed for rate of application with an increase in either 

biomass or total N. In 2014-2015, we observed that the cereal rye at 145 kg N ha-1 again 

demonstrated the capacity to produce a greater biomass (2446.9 kg ha-1) and increased 

the total N (112.6 kg ha-1) content relative to 200 kg N ha-1 (2159.9 kg ha-1) (107.3 kg ha-

1) and 90 kg N ha-1 (2089.8 kg ha-1) (104.4 kg ha-1), respectively (Table B-7) (Table B-8). 
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Conversely, in 2014-2015, the mixture at the lowest rate (90 kg N ha-1) recorded a higher 

biomass (1312.0 kg ha-1) and total N content (67.5 kg ha-1) relative to the 145 kg N ha-1 

(1258.9 kg ha-1) (65.5 kg ha-1) and 200 kg ha-1 (978.3 kg ha-1) (52.3 kg ha-1). In a year 

with warmer spring ambient air temperatures, the relative biomass production and total N 

for cereal rye increased by 15 and 7%, respectively when the application rate was altered 

from 90 to 145 kg N ha-1. However, in 2014-2015, with the increase in rate applied, we 

observed a 4 and 3% decrease in biomass production and total N for the mixture, 

respectively. According to University of Nebraska extension soil specialist, Richard 

Ferguson, 2009; applying an excess of fertilizer to a living crop (corn) may result in 

injuries from an excess of salts or ammonia. Therefore stunting growth both above (leaf 

burn) and below ground (primary roots). Applying this principal to our study could 

potentially explain the decrease in biomass and uptake as N rate increase.  

In order to recognize the trends that occurred, we averaged the collective biomass 

and N uptake data for each treatment over the duration of the two year study. This 

allowed us to directly compare the average biomass production and total N for each 

treatment. Sampling the cover crop in the fall and again in the spring two weeks before 

termination, resulted in a significant difference in both total uptake and biomass 

production between cereal rye and the cereal rye/daikon radish mixture despite the 

application rate (Table B-9) (Table B-10). However, when considering rate (200, 145 and 

90 kg ha-1) as a main effect, we observed no differences in biomass or total N content for 

cereal rye or the mixture. Average above ground biomass production (2013-2015) for the 

monoculture cover crop species (cereal rye), despite rate applied was 1501.9 kg ha-1. In 

comparison to studies conducted by Kasper and Bakker, 2015, cereal rye biomass 
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production over a four year period (2006-2009) averaged 1894 kg ha-1. Due to weather 

conditions experienced over the two year period, N uptake ranged from 32-38 kg ha-1, 35-

108 kg ha-1 and 31-62 kg ha-1for daikon radish (200 kg ha-1 only), cereal rye and the 

mixture (despite rate), respectively. Within our study, cereal rye demonstrated the ability 

to sequester the highest N concentration in comparison to daikon radish and the mixture. 

Under adverse growing conditions, the data suggests that on an annual basis, these cover 

crop species have to ability to absorb 15-54% of the fall N within central Illinois, 

assuming a standard range of N rates applied (200-224 kg ha-1).  

Influence of Alternative N Rates and Cover Crop Inclusion on Corn Nitrogen 

Uptake 

In order to quantify the long term effects of cover cropping on a conventional 

crop production system, corn N uptake (Total N) was measured throughout the 2014 and 

2015 corn growing seasons at critical growth stages. The corn biomass and uptake data, 

in conjunction with yield data aided in determining how the corn crop responds when 

introduced into a long-term cover crop management system with multiple application 

rates of fall N (90, 145 and 200 kg ha-1). No significant three-way or two-way 

interactions were observed between treatment, year, and application rate, so the 

discussion of crop uptake by growth stage results will focus on main effects as 

appropriate (Table B11-14) (Table B15-18). Due to the later application of anhydrous 

ammonium to satisfy the recommended soil temperature minimum and the early winter 

senescence of the daikon radish treatment that occurred in 2013 kept us from establishing 

the daikon radish within the subplot rates. Therefore, similar to the cover crop data, rate 
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subsample data (all rates) for crop uptake were only collected within the cereal rye, cereal 

rye/daikon radish and control treatments.  

On average (2014-2015), at V6, the addition of cereal rye despite year and rate 

applied increased crop uptake comparative to both the control and mixture; however, this 

difference was only significant in comparison to the mixture (Fig. B-14). In 2014, the 

environmental conditions were conducive for soil mineralization and nitrification, with a 

sufficient nutrient supply available in the soil solution, the early season crop was able to 

sequester a range of 8-14% of the total uptake by the sixth vegetative stage. However, 

there were no correlations observed for rate of application with an increase in total N. In 

2014, cereal rye demonstrated the capacity to increase crop uptake at V6 in comparison 

to the control at 145 and 90 kg N ha-1, while the mixture only increased total N relative to 

the control at 145 kg N ha-1 (Fig. B-6). At the 200 kg N ha-1 rate, the daikon radish 

treatment demonstrated the ability to sequester on average the highest N content (43.56 

kg ha-1) at V6 relative to the control (39.90 kg ha-1), cereal rye (31.64 kg ha-1) and the 

cereal rye/daikon radish mixture (29.15 kg ha-1), respectively (Fig. B-3). Though this 

difference at 200 kg N ha-1 was insignificant, this slight increase at V6 for daikon radish, 

could potentially be attributed early season mineralization and increased N retention 

within the upper depth of the soil profile. Conversely, according to a summary of other 

studies conducted by USDA-ARS, the reduction observed for cereal rye at the highest 

rate could potentially be due to residual and fertilizer N immobilization (Dabney et al., 

2001). Although we observed a contribution from the cereal rye at the subsequent rates, 

the lack of significance could mean that the available source of N applied as an inorganic 
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fertilizer in the fall was sufficient for the corn crop to have reached its early season N 

uptake capacity. 

Following the V6 samples in 2014, the weather conditions in the months of June 

and early July were similar to the 30 year regional averages; growing conditions 

continued to be ideal for soil mineralization and subsequent nitrification. Both V12 and 

VT samples were collected in the second-third week in July. On average at V12, despite 

year and rate, the addition of a cover crop increased the total N content by a range of 3-

15% relative to the control (Fig. B-14). However, this was not the trend for 2014; as the 

inclusion of the mixture decreased N content in comparison to the control. Contradictory 

to V6, V12 N content increased with application rate in 2014 (Fig. B-8). Although this 

difference was found to be insignificant, this demonstrates a greater response to 

additional units of N at points of rapid growth and uptake within the growing season. 

These findings are in agreement with those by Dharmakeerthi et al., (2006), where plants 

growing in treatments with higher N application took up significantly more N at critical 

growth stages. At 200 kg N ha-1, the cereal rye (187.12 kg ha-1) demonstrated the ability 

to sequester on average the highest N content at V12 relative to the cereal rye/daikon 

radish mixture (159.47 kg ha-1), daikon radish (156.70 kg ha-1) and control (134.78 kg ha-

1) (Fig. B-3). At the suggested MRTN application rate of 200 kg N ha-1, the corn crop 

was able to sequester a range of 50-58% of the total uptake by the twelfth vegetative 

stage as a result of cover crop inclusion, in comparison to the control which accumulated 

only 47% of the total uptake.  

The following weather conditions experienced through VT were conducive for 

crop growth, but continually saturated soil conditions potentially could have advanced 
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leaching and denitrification processes. In 2014, the corn crop within the control treatment 

continued to display reduced N uptake values; despite year, both the cereal rye and the 

mixture sequester a high N concentration comparative to the control at both 145 and 90 

kg N ha-1 (Fig. B-10). At 200 kg N ha-1, the control (178.09 kg ha-1) treatment displayed a 

16% reduction in total N uptake values in comparison to the cereal rye (213.28 kg ha-1) 

and daikon radish (209.90 kg ha-1) treatments at tassel (Fig. B-3). However, the continued 

absence of significance between the treatments demonstrated the capacity of the 

inorganic fertilizer applied in the fall to sustain crop development through the final 

vegetative growth stage. 

The ambient air temperature throughout the remainder of the 2014 growing 

season remained consistent with the regional average values; however, the precipitation 

totals following the mid-season samples exhibited a general decline, relative to the 30 

year averages. Once physiological maturity (R6) was reached in September, a fourth 

sample set was collected. At this final reproductive stage of corn development, the corn 

plant has ceased nutrient uptake from the soil solution and has begun to dry down. 

Similar to VT, the absence of a cover crop limited the uptake potential of the corn crop. 

At R6, the addition of cereal rye, despite year and rate applied, significantly increased 

crop uptake comparative to both the control and the mixture (Fig. B-14). On average 

(2014-2015), the addition of cereal rye and daikon radish (200 kg N ha-1) increased the 

total N content by 19 and 28%, respectively, relative to the control (Fig B-5). This was 

also the trend for 2014; however the differences were found to be insignificant. Optimal 

growing conditions allowed natural soil mineralization to continue well into the 

reproductive stages of the crop, therefore reducing the dependency upon the applied 
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fertilizers. As a result, we observed comparable N concentrations between treatments at 

subsequent rates of N application.  

In 2015, the average air temperature following the spring cover crop samples 

(April-June) was similar to the 30 year regional value; however, the total precipitation 

received was 71.6 mm greater. Despite rainfall totals much greater than regional 

averages, the early season (V6) crop uptake potential was not significantly limited in 

comparison to the previous growing season. The cereal rye treatment increased total N 

content within the crop at V6, relative to the mixture and control despite the rate of 

application. Despite year, the daikon radish treatment at 200 kg N ha-1 demonstrated the 

capacity to increase N content relative to all treatments, this difference was only 

significant relative to the mixture (21.92 kg ha-1) (Fig. B-14). In 2015, at 200 kg N ha-1, 

both the daikon radish (43.30 kg ha-1) and cereal rye (35.36 kg ha-1) treatments increased 

uptake potential at V6 relative to the control (33.22 kg ha-1) by 23 and 6%, respectively 

(Fig. B-4). At 145 kg N ha-1, cereal rye was the only treatment that demonstrated the 

capacity to increase total N relative to the control (Fig. B-7). However, at 90 kg N ha-1, 

both cereal rye and the mixture increased crop uptake at V6 in comparison to the control. 

With more rainfall, the greater the opportunity for leaching and denitrification. The 

presence of a cover crop protects a large portion of the N within the organic form, which 

increases organic material and supports in-season mineralization. This is reaffirmed by an 

Oregon State University Extension study, which established that cover crop N uptake is a 

good indicator of the PAN to be released to the subsequent cash crop following 

incorporation. However, their cover crop incubation study also found that usually less 
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than 50% of the total cover crop N uptake is released as PAN during the first year of 

integration (Sullivan and Andrews, 2012).  

June and July recoded precipitation values that were greater than the regional 

averages with near record rainfall totals. Frequent rainfall events created ponding within 

the field, thus sustaining soil moisture levels at or above field capacity, which increased 

the potential for leaching and denitrification. Thus, creating significant differences in 

crop uptake at V12 relative to the previous year (Table B-16). In conjunction with 

restrictive growing conditions, the absence of a cover crop treatment continued to reduce 

uptake potential in 2015. At 145 and 90 kg N ha-1, both the cereal rye and the mixture 

demonstrated the capacity to increase total N relative to the control (Fig. B-9). At 200 kg 

N ha-1, the daikon radish (130.12 kg ha-1) treatment demonstrated the ability to sequester 

the highest N content at V12 relative to the cereal rye/daikon radish mixture (119.12 kg 

ha-1), control (109.37 kg ha-1) and cereal rye (81.13 kg ha-1) (Fig. B-4). In comparison to 

the control, the addition of daikon radish and the mixture cover crop treatments increased 

corn uptake by 16 and 8%, respectively at V12. Though this difference was insignificant, 

the trend for cover crop inclusion to increase N content was observed for all three rates 

within a single growth stage. The weather patterns could have resulted in net 

mineralization and a faster N release rate, therefore increasing N availability to soil 

microorganisms (Paul and Clark, 1996; Grant et al., 2002).  

Similar to V12, the VT data displayed significant annual differences; 2014 

produced greater N concentrations relative to 2015 (Table B-17). These annual 

differences can be attributed to the aforementioned weather patterns experienced in June 

and July. At tassel in 2015, continuous precipitation and warmer soil conditions aided in 
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nitrification, thus leaving the remainder of inorganic fertilizer vulnerable to be leached 

below the rooting zone, effectively depleting soil N. This was evident in N uptake at VT 

for the control treatment at 200 kg N ha-1, as uptake did not increase from the recorded 

V12 values (Fig. B-4). The daikon radish (157.54 kg ha-1) and cereal rye (127.41 kg ha-1) 

treatments demonstrated the ability to sequester on average the highest N content at V12 

relative to the control (113.95 kg ha-1) and the cereal rye/daikon radish mixture (93.90 kg 

ha-1). At 200 kg N ha-1, the addition of daikon radish and cereal rye increased N uptake at 

tassel by 28 and 11%, respectively. However, this was not the trend for the lower rates. 

At 145 and 90 kg N ha-1, we observed a comparable N uptake for all treatments (Fig. B-

11). Preceding the reproductive stage of the crop, the corn biomass within the control 

treatment had accumulated 61% of the total N despite the rate applied. These values 

coincided with a study conducted at the University of Illinois, which determined up to 

65% of the total crop N uptake is sequestered prior to R1 (Snyder, 2014). This is a 

substantial observation considering in 2015 under adverse growing conditions, the 

addition of daikon radish increased the N content prior to R1 to 74% of the total crop 

uptake.   

Once physiological maturity (R6) had been reached in September of 2015, a 

fourth sample set was again collected. Environmental conditions experienced during the 

months of June and July continued into August. The R6 crop uptake data displayed 

significant differences in N uptake with the 2014 R6 samples recording significantly 

greater N content relative to the 2015 samples (Table B-18). This annual reduction is 

attribute to the effectively depleted soil solution, which limited uptake as the crop 

transitioned into the reproductive stage. At R6, the addition of cereal rye, despite year 
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and rate applied, significantly increased crop uptake comparative to both the control and 

mixture (Fig. B-14). Although there was no significant difference among treatments at 

200 kg N ha-1, the absence of a cover crop (control, 229.54 kg ha-1) again reduced the 

total N content within the corn biomass relative to the monoculture cover crop species 

(cereal rye, 343.67 kg ha-1) (daikon radish, 271.28 kg ha-1) at the end of the growing 

season (Fig. B-4). In 2015, the addition of cereal rye and daikon at 200 kg N ha-1 

increased R6 crop uptake by an average of 25% relative to the control. This study has 

demonstrated that the addition of cover crops into a conventional cropping system 

impacted total N uptake at each of the sampled corn growth stages. Total N content at 

physiological maturity demonstrated the capacity of the monoculture cover crop species 

to extend and increase uptake potential late into the growing season. 

Influence of Alternative N Rates and Cover Crop Inclusion on Corn Grain Yield 

In 2014, yield was calculated using a weigh wagon and then corroborated with 

weights and percent moisture from the local grain cooperative. However, in 2015, data 

collection was near completion when an unforeseen accident caused the loss of all grain 

yield data. Therefore the 2015 yield data that is presented was calculated yield based 

upon R6 grain samples taken approximately one week prior to harvest; the two years are 

presented and discussed separately.  

Throughout the 2014 growing season the environmental conditions emulated the 

30 year regional values; these conditions were conducive for soil mineralization and 

nitrification. However, occasionally saturated soil conditions could have prompted 

leaching and denitrification. These weather patterns were evident in the crop uptake data, 

displaying later season increases in total N concentration when a cover crop was present. 
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The 2014 grain yield were highly correlated with the R6 N uptake data. The addition of 

cover crops created a significant and biological impact on the crop and its ability to 

sequester nutrients, which translated into grain production. However, other studies 

documenting the impact of cover crops on corn yield, observed either no effect or a 

decrease in yield. The documented explanations for the decrease in yield were either 

allelopathic effects of the rye, poor establishment or differences in soil properties 

(Pantoja et al., 2015; Olson et al., 2010; Moore et al., 2014; Reinbott et al., 2004). In 

2014, the control treatment yielded 12.8 Mg ha-1 at 200 kg N ha-1. The absence of a cover 

crop reduced the crop yielding potential in the initial year for commercial grain by 6% 

relative to the monoculture cover crop species, thus resulting in a 0.8 Mg ha-1 decrease in 

grain yield (Fig. B-15). Due to timely establishment and proper management of the cover 

crop in 2014, we observed an increase in N efficacy. 

Although the ANOVA (Table B-20) displayed no statistical differences between 

the treatments at the subsequent rates, we did observe statistical differences between 

treatments, despite rate using an orthogonal contrast. Despite application rate, the 

addition of a cereal rye cover crop significantly increased yield (Table B-21). In 2014, the 

average yield for the control treatment was 12.7 Mg ha-1. Despite optimal growing 

conditions, there was no response of the corn crop to the additional N within a cover crop 

treatment; the average yield for both cereal rye and the mixture at all three rates was 13.2 

Mg ha-1. The absence of a cover crop reduced the crop yielding potential in the initial 

year for commercial grain by a range of 3-6% (Fig. B-17). As a result of the increased 

yield despite rate, the cover crop treatments demonstrated the potential to reduce the 

necessary units of N to reach optimum yield and increase overall economic return. This 
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coincides with survey data collected by the CTIC and SARE, which validates the addition 

of a cover crop into a conventional cropping systems. Surveyed producers from across 

the country (1,200 producers) reported cover crop adoption increasing corn yields by 

2.1%. This increase was a consecutive trend, which has been observed over the past three 

years (Cover Crop Survey Report, 2015).   

Annual difference between years were not assessed due to the loss of all 2015 

yield data. However, no significant two-way interaction was observed between treatment 

and application rate. In 2015, calculated yields based upon R6 grain samples displayed 

significant differences for both main effect sources (treatment and rate) (Table B-23). We 

observed a surplus of 153 mm of rainfall during May-August (2015). Thus, creating soil 

conditions that were consistently at or above field capacity throughout the latter part of 

the growing season. Due to these conditions, corn yield was increased with increasing 

rates of applied N; the application rates of 200 (REGWQ, df= 22, P <0.0001) and 145 kg 

N ha-1 (REGWQ, df= 22, P= 0.0003) significantly increased yield relative to lowest rate 

of 90 kg N ha-1. In 2015, corn yield responded inversely relative to the previous season, 

the addition of cover crops negatively impacted yield. Despite the potential of increased 

rates of leaching and denitrification, the control treatment despite rate demonstrated the 

capacity to increase yield relative to all cover crop treatments (Fig. B-20); however, this 

difference was only significant in comparison to the mixture (Table B-24).  

Conclusion 

This study indicates that long-term cover crop integration positively impacted the 

corn uptake at critical growth stages, while demonstrating the capacity to either increase 

or maintain corn yields. Sampling the cover crop in the fall and again in the spring two 
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weeks before termination, resulted in a significant difference in both total uptake and 

biomass production between cereal rye and the cereal rye/daikon radish mixture despite 

the application rate. We observed no differences in biomass or total N content between 

the application rates (200, 145 and 90 kg ha-1) for cereal rye or the mixture. Due to the 

variable weather conditions experienced over the two year period, N uptake ranged from 

32-38 kg ha-1, 35-108 kg ha-1 and 31-62 kg ha-1for daikon radish (200 kg ha-1 only), 

cereal rye and the mixture (despite rate), respectively. Cereal rye demonstrated the ability 

to sequester the highest N concentration in comparison to daikon radish and the mixture. 

Under adverse growing conditions, the data suggests these cover crop species have to 

ability to absorb 15-54% of the fall N in the Upper Mississippi River Basin, assuming a 

standard range of N rates applied (200-224 kg ha-1).  

This study has proven that corn N uptake and yield can be influenced by the inclusion of 

select cover crop species. Annual trends demonstrate that in years with large amounts of 

N being lost (2015), that cover crop inclusion has a greater influence on corn N uptake. 

However, despite year, the addition of the monoculture cover crop species effectively 

extended uptake potential late into the growing season, increasing the total N content at 

physiological maturity. On average, at 200 kg N ha-1 the addition of cereal rye and daikon 

radish treatments increased R6 crop uptake by 20%. At R6, we observed significant 

differences between application rates, 200 kg N ha-1, demonstrated the capacity to 

increase corn N uptake relative to 145 and 90 kg N ha-1. However, despite rate applied, 

cereal rye significantly increased total N content at R6, relative to both the control and 

the cereal rye/daikon radish mixture. In 2014, the absence of a cover crop reduced the 

crop yielding potential in the initial year for commercial grain by a range of 3-6% relative 
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to cereal rye and the mixture. As a result of the increased yield despite rate, the cover 

crop treatments demonstrated the potential to reduce the necessary units of N to reach 

optimum yield and increase overall economic return. Despite weather extremes, the data 

demonstrated that fall applying N into a living stand of cover crops improved the crop 

uptake efficiency resulted in equal or greater corn yield. 

 Multiple years of research have altered the way that producers perceive the use of 

cover crops. However, there is a need for long-term research to better understand the 

impact of cover crops and provide data to better educate producers on how to utilize 

various cover crop species within their current management strategies. As the primary 

focus has been placed on keeping reactive nitrogen from surface waters, little data has 

been compiled in order to see if the inclusion of cover crops is an economically feasible 

option for producers within the MRB. Previously conducted research has proven that 

cover crops have the potential to help meet long-term nitrogen management and 

reduction goals as set by the EPA. However, there is also a dearth of knowledge on the 

efficacy of large scale cover cropping and if the integration of cover crops will satisfy the 

reduction goals by the specific target date of 2025. Furthermore, if the reduction goals are 

not meet, how will government agencies respond and will impending regulations be 

placed on the timing, placement and source of fertilizers used.
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CHAPTER V 

CONCLUSION  

This study indicates that long-term cover crop integration positively impacted the 

distribution of spring inorganic N following fall application. The cereal rye treatment 

demonstrated the greatest capacity to influence N distribution over the four year period. 

At the agronomic depth, cereal rye on average reduced soil NO3-N by 34% and increased 

the NH4-N concentration by 46% in comparison to the control. Relative to the control, 

cereal rye reduced NO3-N content by 35% at the environmental depths. The daikon 

radish/cereal rye mixture exhibited the ability to influence N in a similar manner as cereal 

rye; however, the percent reduction was not as noteworthy. Daikon radish created new 

trends at the agronomic depth, demonstrating the capacity to increase both NO3-N by 

17% and NH4-N on average by 41%. In comparison to the control, fall applying N 

directly into daikon radish residue resulted in a 22% reduction of total soil NO3-N within 

the 20-80cm portion of the soil profile.  

  Each year cold winter weather terminated the daikon radish three months prior chemical 

termination of the cereal rye and cereal rye within the mixture. As the result of 

mineralization and subsequent nitrification, daikon radish had equal or greater soil nitrate 

at the agronomic depth relative to the control, at the time of sampling 3-6 weeks before 

planting. However, the early season release of the inorganic N from the daikon radish 

residue increased the susceptibility to N loss in the spring. 
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 In contrast, both the cereal rye and cereal rye within the mixture had less time to 

decompose and nitrified N was less susceptible to loss due to spring precipitation. 

Sampling the cover crop in the fall and again in the spring two weeks before termination, 

resulted in a significant difference in both total uptake and biomass production between 

cereal rye and the cereal rye/daikon radish mixture despite the application rate. However, 

we observed no differences in biomass or total N content between the application rates 

(200, 145 and 90 kg ha-1) for cereal rye or the mixture. Due to the variable weather 

conditions experienced over the two year period, N uptake ranged from 32-38 kg ha-1, 35-

108 kg ha-1 and 31-62 kg ha-1for daikon radish (200 kg ha-1 only), cereal rye and the 

mixture (despite rate), respectively. Within our study, cereal rye demonstrated the ability 

to sequester the highest N concentration in comparison to daikon radish and the mixture. 

Under adverse growing conditions, the data suggests these cover crop species have to 

ability to absorb 15-54% of the fall N in the Upper Mississippi River Basin, assuming a 

standard range of N rates applied (200-224 kg ha-1).  

This study has also established that long-term cover crop integration positively 

impacts corn uptake at critical growth stages, while demonstrating the capacity to either 

increase or maintain corn yields. Annual trends demonstrate that in years with large 

amounts of N being lost (2015), that cover crop inclusion has a greater influence on corn 

N uptake. Despite year, the addition of the monoculture cover crop species effectively 

extended uptake potential late into the growing season, increasing the total N content at 

physiological maturity. On average, at 200 kg N ha-1 the addition of cereal rye and daikon 

radish treatments increased R6 crop uptake by 20%. At R6, we observed significant 

differences between application rates, 200 kg N ha-1, demonstrated the capacity to 
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increase corn N uptake relative to 145 and 90 kg N ha-1. However, despite rate applied, 

cereal rye significantly increased total N content at R6, relative to both the control and 

the cereal rye/daikon radish mixture. In 2014, the absence of a cover crop reduced the 

crop yielding potential in the initial year for commercial grain by a range of 3-6% relative 

to cereal rye and the mixture. As a result of the increased yield despite rate, the cover 

crop treatments demonstrated the potential to reduce the necessary units of N to reach 

optimum yield and increase overall economic return. Despite weather extremes, the data 

demonstrated that fall applying N into a living stand of cover crops improved the crop 

uptake efficiency resulted in equal or greater corn yield. 

 Multiple years of research have altered the way that producers perceive the use of 

cover crops. However, there is a need for long-term research to better understand the 

impact of cover crops and provide data to better educate producers on how to utilize 

various cover crop species within their current management strategies. As the primary 

focus has been placed on keeping reactive nitrogen from surface waters, little data has 

been compiled in order to see if the inclusion of cover crops is an economically feasible 

option for producers within the MRB. Previously conducted research has proven that 

cover crops have the potential to help meet long-term nitrogen management and 

reduction goals as set by the EPA. However, there is also a dearth of knowledge on the 

efficacy of large scale cover cropping and if the integration of cover crops will satisfy the 

reduction goals by the specific target date of 2025. Furthermore, if the reduction goals are 

not meet, how will government agencies respond and will impending regulations be 

placed on the timing, placement and source of fertilizers used.
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APPENDIX A 

TABLES AND FIGURES FOR CHAPTER III  
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Table A-1   

Cultural Practices 

  Crop Year 

Field Activity 2012 2013 2014 2015 

Cover Crop 
Sampling 

Mar. 17 Apr. 7 Apr. 17 Apr.14 

Spring Soil 
Sampling 

Mar. 18 Mar. 30 Apr. 18 Apr.16 

C. Crop 
Termination 

Mar. 21 Apr. 9 Apr. 18 Apr.17 

Tillage Apr. 3 May.9 May.5 Apr.30 

Main Crop Planting Apr. 23 May.15 May.5 May.2 

V6 Crop Sampling -- -- Jun.9 Jun.11 

V12 Crop Sampling -- -- Jul.1 Jul.3 

VT Crop Sampling -- -- Jul.10 Jul.12 

R6 Crop Sampling -- -- Sep. 16 Sep. 10 

Harvest Sampling Aug. 24 Sep. 14 Sep. 19 Sep.21 

Cover Crop 
Planting 

Sep. 13 Sep. 21 Sep. 20 Oct. 1 

Fall Soil Sampling Sep.20 Sep.30 Sep.23 Sep. 29 

Cover Crop 
Sampling 

Nov. 27 Nov. 24 Nov.4 Dec. 1 

Fall N Fertilizer 
Date 

Nov. 19 Dec. 12 Dec.4 -- 
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Table A-2 

Cover Crop Growing Degree Days (GDD) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2011-2012 2012-2013 2013-2014 2014-2015 

Fall GDD 1909 1475 1235 1249 

Spring GDD 637 370 443 649 

Season Total 2547 1845 1679 1898 



www.manaraa.com

 

105 

 

 

 

D
ai

k
o
n 

R
ad

is
h

6
5

6
1

.9
A

a†
7

1
6

3
7

0
7
.5

B
b

3
1
6

.4
1

4
5

0
.3

A
c

1
1
5

.1
6

3
8
.4

A
d

1
0

.7
5

3
0

8
9

.5
A

2
8

9
.6

C
er

ea
l R

ye
3
9

0
6

.5
B

a
b

2
2
8

.4
5
5

8
5
.5

A
a

2
9

.8
7
0

6
.8

A
c

1
0
8

.8
2

1
6

0
A

b
4
8

2
.2

3
0

8
9

.7
A

2
1

2
.3

C
er

ea
l R

ye
/ 

D
ai

k
o
n 

R
ad

is
h

2
3

6
3
.7

C
a

6
6

.4
3
3

4
8
.7

C
a

6
2

.6
6

7
0

.2
A

b
1

7
9

.7
9

7
8
.3

A
ab

3
2

3
.8

1
8

4
0

.2
B

1
5

8
.1

k
g
 h

a
-1

/ 
st

d
 e

rr

Y
e
ar

B
io

m
as

s

2
0

1
1
-2

0
1
2

2
0
1

2
-2

0
1

3
2

0
1

3
-2

0
1

4
2
0

1
4

-2
0
1

5
A

v
er

ag
e

N
o

te
: 

†
 U

p
p

er
ca

se
 l

et
te

rs
 i

n
d
ic

at
e 

si
g
n
if

ic
an

ce
 b

et
w

ee
n
 t

re
at

m
en

ts
 w

it
h
in

 y
ea

r.
  

L
o
w

er
ca

se
 l

et
te

rs
 i

n
d
ic

at
e 

si
g
n
if

ic
an

t 

d
if

fe
re

n
ce

s 
b

et
w

ee
n

 y
ea

rs
 w

it
h

in
 t

re
at

m
en

t 
(a

 =
 0

.0
5
).

 

T
ab

le
 A

-3
  

 

 C
o

ve
r 

C
ro

p
 B

io
m

a
ss

 M
ea

n
s 

a
n

d
 S

ta
n
d
a

rd
 E

rr
o
r 

fo
r 

2
0
1
1

-2
0
1
5
 G

ro
w

in
g

 S
ea

so
n
s 



www.manaraa.com

 

106 

 

 

D
ai

k
o

n 
R

ad
is

h
2
2

6
.8

A
a†

2
2
.0

1
3
1
.9

B
b

5
.7

3
8
.2

A
c

2
.7

3
1

.9
B

c
1

.2
1
0
7

.2
B

7
.9

C
er

ea
l R

ye
1
8
8

.1
A

B
b

1
3
.4

2
4
9
.9

A
a

3
.1

3
5
.0

A
d

4
.4

1
0

7
.2

A
c

2
1

.8
1
4
5

.1
A

1
0

.7

C
er

ea
l R

ye
/ 
D

ai
k
o

n 
R

ad
is

h
1

1
0
.6

B
a

7
.3

1
2
8
.1

C
ab

6
.5

3
2
.5

A
b

7
.2

5
2
.3

A
B

b
1
7

.2
8
0
.9

C
9
.5

k
g 

ha
-1

/ 
st

d
 e

rr

Y
ea

r
N

 U
p

ta
k
e

2
0
1

1
-2

0
1

2
2

0
1
2

-2
0
1
3

2
0

1
3
-2

0
1
4

2
0

1
4
-2

0
1
5

A
ve

ra
ge

N
o
te

: 
†

 U
p
p

er
ca

se
 l

et
te

rs
 i

n
d
ic

at
e 

si
g
n
if

ic
an

ce
 b

et
w

ee
n
 t

re
at

m
en

ts
 w

it
h
in

 y
ea

r.
  

L
o
w

er
ca

se
 l

et
te

rs
 i

n
d
ic

at
e 

si
g
n
if

ic
an

t 

d
if

fe
re

n
ce

s 
b

et
w

ee
n
 y

ea
rs

 w
it

h
in

 t
re

at
m

en
t 

(a
 =

 0
.0

5
).

 

 T
ab

le
 A

-4
  

 

 C
o

ve
r 

C
ro

p
 N

 U
p

ta
ke

 M
ea

n
s 

a
n

d
 S

ta
n
d
a

rd
 E

rr
o
r 

fo
r 

2
0
1
1

-2
0
1
5
 G

ro
w

in
g

 S
ea

so
n
s 

 



www.manaraa.com

 

107 

Table A-5   

 

Cover Crop Biomass ANOVA 

 

Source of Variation DF F Value Pr > F 

treatment 2 18.38 <.0001 

year 3 70.04 <.0001 

block 2 0.69 0.5102 

treatment*year 6 8.28 <.0001 

Note: ANOVA table depicts the response variable (cover crop biomass) and probability 

values for each source of variation. 

 

 

Table A-6  

 

Cover Crop N Uptake ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 2 39.47 <.0001 

year 3 95.91 <.0001 

block 2 0.3 0.7463 

treatment*year 6 15.41 <.0001 

Note: ANOVA table depicts the response variable (cover crop N uptake) and probability 

values for each source of variation. 
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Figure A-3.  Soil nitrate (kg N ha-1) by depth (cm) collected in spring of 2012.  

Figure A-4.  Soil nitrate (kg N ha-1) by treatment. Samples collected in the spring 

of 2012. Different letters indicate significant difference at an alpha level of 0.05.   
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Figure A-5.  Soil ammonium (kg N ha-1) by depth (cm) collected in spring of 

2012.   
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Figure A-6.  Soil nitrate (kg N ha-1) by depth (cm) collected in spring of 2013.   

Figure A-7.  Soil nitrate (kg N ha-1) by treatment. Samples collected in the 

spring of 2013. Different letters indicate significant difference at an alpha level 

of 0.05.   
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Figure A-8.  Soil ammonium (kg N ha-1) by depth (cm) collected in spring of 

2013.   
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Figure A-9.  Soil nitrate (kg N ha-1) by depth (cm) collected in spring of 2014.   

Figure A-10.  Soil nitrate (kg N ha-1) by treatment. Samples collected in the 

spring of 2014. Different letters indicate significant difference at an alpha level 

of 0.05.   
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Figure A-11.  Soil ammonium (kg N ha-1) by depth (cm) collected in spring of 

2014. 
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Figure A-12.  Soil nitrate (kg N ha-1) by depth (cm) collected in spring of 2015.   

Figure A-13.  Soil nitrate (kg N ha-1) by treatment. Samples collected in the 

spring of 2015. Different letters indicate significant difference at an alpha level 

of 0.05.   
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Figure A-14.  Soil ammonium (kg N ha-1) by depth (cm) collected in the spring 

of 2015.  
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Figure A-15.  Average soil nitrate (kg N ha-1) by depth (cm). Samples collected 

in spring of each season (2011-2015).   

Figure A-16.  Average soil nitrate (kg N ha-1) by treatment. Samples collected in 

the spring of each season (2011-2015). Different letters indicate significant 

difference at an alpha level of 0.05.   
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Figure A-17.  Average soil ammonium (kg N ha-1) by depth (cm) collected in 

the spring of each season (2011-2015). 
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Table A-7  

 

Soil Distribution (NO3-N) ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 3 4.15 0.0077 

year 3 9.43 <.0001 

depth 3 22.75 <.0001 

block 2 1.18 0.3115 

treatment*year 9 2.58 0.0091 

treatment*depth 9 1.33 0.2283 

year*depth 9 5.8 <.0001 

treatment*year*depth 27 1.01 0.4577 

Note: ANOVA table depicts the response variable (NO3-N distribution) and probability 

values for each source of variation. 

 

Table A-8  

 

Soil Distribution (NH4-N) ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 3 0.22 0.885 

year 3 1.8 0.1506 

depth 3 2.71 0.048 

block 2 2.9 0.0585 

treatment*year 9 1.48 0.1622 

treatment*depth 9 0.27 0.9811 

year*depth 9 1.62 0.1173 

treatment*year*depth 27 0.82 0.7163 

Note: ANOVA table depicts the response variable (NH4-N distribution) and probability 

values for each source of variation. 
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Figure A-18.  Crop N uptake (kg ha-1) by growth stage. Samples collected 

throughout the 2014 corn growing season. Different letters indicate significant 

difference at individual growth stages. (Alpha level of 0.05). 

Figure A-19.  Crop N uptake (kg ha-1) by growth stage. Samples collected 

throughout the 2015 corn growing season.  
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Table A-9  

 

Crop Uptake (V6) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 4.58 0.0196 

year 1 0.57 0.4636 

block 2 1.14 0.3479 

treatment*year 3 0.58 0.6386 

Note: ANOVA table depicts the response variable (V6 crop uptake) and probability 

values for each source of variation. 
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Figure A-20.  Average crop N uptake (kg ha-1) by growth stage (2014-2015). 

Samples collected throughout both corn growing season. Different letters 

indicate significant difference at individual growth stages.  

(Alpha level of 0.05). No significant differences at V12 or VT.  
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Table A-10  

 

Crop Uptake (V12) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 0.38 0.7661 
year 1 11.04 0.005 

block 2 0.59 0.5674 
treatment*year 3 1.64 0.2254 

Note: ANOVA table depicts the response variable (V12 crop uptake) and probability 

values for each source of variation. 

 

 

Table A-11  

 

Crop Uptake (VT) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 1.89 0.1779 
year 1 19.83 0.0005 

block 2 0.2 0.8172 
treatment*year 3 0.25 0.8612 

Note: ANOVA table depicts the response variable (VT crop uptake) and probability 

values for each source of variation. 

 

 

Table A-12  

 

Crop Uptake (R6) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 8 0.0024 
year 1 6.06 0.0275 

block 2 1.02 0.3866 
treatment*year 3 0.11 0.9532 

Note: ANOVA table depicts the response variable (R6 crop uptake) and probability 

values for each source of variation. 
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Table A-13 

 

2014 Grain Yield ANOVA  

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 
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Source of Variation DF F Value Pr > F 

treatment 3 2.15 0.1946 

block 2 0.23 0.804 

Figure A-21.  Corn yield (Mg ha-1) by treatment. Samples collected at harvest 

(2014). No significant differences between treatment yield at 200 kg N ha-1. 
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Table A-14  

 

2015 Grain Yield ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 3 0.8 0.536 

block 2 1.04 0.4084 

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 
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Figure A-22.  Corn yield (Mg ha-1) by treatment. Samples collected at harvest 

(2015). No significant differences between treatment yield at 200 kg N ha-1. 
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APPENDIX B 

TABLES AND FIGURES FOR CHAPTER IV  
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Table B-1   

Cultural Practices 

 

 

  

 Crop Year 

Field Activity 2012 2013 2014 2015 

Cover Crop 
Sampling 

Mar. 17 Apr. 7 Apr. 17 Apr.14 

C. Crop 
Termination 

Mar. 21 Apr. 9 Apr. 18 Apr.17 

Tillage Apr. 3 May.9 May.5 Apr.30 

Main Crop Planting Apr. 23 May.15 May.5 May.2 

V6 Crop Sampling -- -- Jun.9 Jun.11 

V12 Crop Sampling -- -- Jul.1 Jul.3 

VT Crop Sampling -- -- Jul.10 Jul.12 

R6 Crop Sampling -- -- Sep. 16 Sep. 10 

Harvest Sampling Aug. 24 Sep. 14 Sep. 19 Sep.21 

Cover Crop 
Planting 

Sep. 13 Sep. 21 Sep. 20 Oct. 1 

Cover Crop 
Sampling 

Nov. 27 Nov. 24 Nov.4 Dec. 1 

Fall N Fertilizer 
Date 

Nov. 19 Dec. 12 Dec.4 -- 
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Table B-2 

Cover Crop Growing Degree Days (GDD) 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

  

 

 2013-2014 2014-2015 

Fall GDD 1235 1249 

Spring GDD 443 649 

Season Total 1679 1898 
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Table B-5   

 

Cover Crop Biomass (200 kg N ha-1) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 2 2.43 0.1376 

year 1 1.92 0.1958 

block 2 0.05 0.9497 

treatment*year 2 8.21 0.0078 

Note: ANOVA table depicts the response variable (cover crop biomass) and probability 

values for each source of variation. 

 

Table B-6  

 

Cover Crop N Uptake (200 kg N ha-1) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 2 4.32 0.0445 

year 1 7.26 0.0225 

block 2 0.04 0.9631 

treatment*year 2 4.73 0.0358 

Note: ANOVA table depicts the response variable (cover crop N uptake) and probability 

values for each source of variation. 
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Table B-9   

 

Cover Crop Biomass (by rate) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 1 18.18 0.0003 

year 1 52.27 <.0001 

rate 2 0.47 0.6291 

block 2 0.07 0.9289 

treatment*year 1 10.89 0.0033 

treatment*rate 2 0.14 0.8737 

year*rate 2 0.25 0.783 

treatment*year*rate 2 0.41 0.6674 

Note: ANOVA table depicts the response variable (cover crop biomass) and probability 

values for each source of variation. 

 

Table B-10  

 

Cover Crop N Uptake (by rate) ANOVA (2013-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 1 14.73 0.0009 

year 1 59.9 <.0001 

rate 2 0.17 0.8409 

block 2 0.23 0.7995 

treatment*year 1 9.74 0.005 

treatment*rate 2 0.08 0.9249 

year*rate 2 0.18 0.8403 

treatment*year*rate 2 0.26 0.7771 

Note: ANOVA table depicts the response variable (cover crop N uptake) and probability 

values for each source of variation. 
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Figure B-3.  Crop N uptake (kg ha-1) at 200 kg N ha-1 by growth stage. Samples 

collected throughout the 2014 corn growing season. Different letters indicate 

significant difference at individual growth stages (Alpha level of 0.05). 

Figure B-4.  Crop N uptake (kg ha-1) at 200 kg N ha-1 by growth stage. Samples 

collected throughout the 2015 corn growing season.  
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Table B-11  

 

Crop Uptake at 200 kg N ha-1 (V6) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 4.58 0.0196 

year 1 0.57 0.4636 

block 2 1.14 0.3479 

treatment*year 3 0.58 0.6386 

Note: ANOVA table depicts the response variable (V6 crop uptake) and probability 

values for each source of variation. 
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Figure B-5.  Average crop N uptake (kg ha-1) at 200 kg N ha-1 by growth stage 

(2014-2015). Samples collected throughout both corn growing seasons. 

Different letters indicate significant difference at individual growth stages    

(Alpha level of 0.05). No significant differences at V12 or VT.    
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Table B-12  

 

Crop Uptake at 200 kg N ha-1 (V12) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 0.38 0.7661 
year 1 11.04 0.005 

block 2 0.59 0.5674 
treatment*year 3 1.64 0.2254 

Note: ANOVA table depicts the response variable (V12 crop uptake) and probability 

values for each source of variation. 

 

 

Table B-13  

 

Crop Uptake at 200 kg N ha-1 (VT) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 1.89 0.1779 
year 1 19.83 0.0005 

block 2 0.2 0.8172 
treatment*year 3 0.25 0.8612 

Note: ANOVA table depicts the response variable (VT crop uptake) and probability 

values for each source of variation. 

 

 

Table B-14  

 

Crop Uptake at 200 kg N ha-1 (R6) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 3 8 0.0024 
year 1 6.06 0.0275 

block 2 1.02 0.3866 
treatment*year 3 0.11 0.9532 

Note: ANOVA table depicts the response variable (R6 crop uptake) and probability 

values for each source of variation. 

 

 



www.manaraa.com

 

138 

 

 

 

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

C
o

rn
 N

 U
p

ta
k

e
 (

k
g

 h
a

-1
)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

C
o

rn
 N

 U
p

ta
k

e
 (

k
g

 h
a

-1
)

Figure B-6.  Crop N uptake (kg ha-1) by rate. Samples collected at V6 (2014).  

Figure B-7.  Crop N uptake (kg ha-1) by rate. Samples collected at V6 (2015).  
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Table B-15  

Crop Uptake by Rate (V6) ANOVA (2014-2015) 

 

Note: ANOVA table depicts the response variable (V6 crop uptake) and probability 

values for each source of variation. 

 

 

 

Source of Variation DF F Value Pr > F 

treatment 2 3.24 0.0516 

year 1 4.04 0.0525 

rate 2 1.66 0.2061 

block 2 1.9 0.1651 

treatment*year 2 1.16 0.3268 

treatment*rate 4 1.02 0.4126 

year*rate 2 0.17 0.8474 

treatment*year*rate 4 0.16 0.9565 
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Figure B-8.  Crop N uptake (kg ha-1) by rate. Samples collected at V12 (2014).  

Figure B-9.  Crop N uptake (kg ha-1) by rate. Samples collected at V12 (2015).  
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Table B-16  

 

Crop Uptake by Rate (V12) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 2 0.13 0.8825 

year 1 40.72 <.0001 

rate 2 1.92 0.1619 

block 2 0.74 0.4857 

treatment*year 2 0.57 0.5726 

treatment*rate 4 0.29 0.8849 

year*rate 2 0.12 0.8906 

treatment*year*rate 4 1.15 0.352 

Note: ANOVA table depicts the response variable (V12 crop uptake) and probability 

values for each source of variation. 
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Figure B-10.  Crop N uptake (kg ha-1) by rate. Samples collected at VT (2014).  

Figure B-11.  Crop N uptake (kg ha-1) by rate. Samples collected at VT (2015).  
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Table B-17  

Crop Uptake by Rate (VT) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 2 0.15 0.8644 

year 1 63.73 <.0001 

rate 2 0.85 0.4379 

block 2 0.35 0.7045 

treatment*year 2 0.84 0.4389 

treatment*rate 4 1.74 0.164 

year*rate 2 0.8 0.4574 

treatment*year*rate 4 0.78 0.5488 

Note: ANOVA table depicts the response variable (VT crop uptake) and probability 

values for each source of variation. 
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Figure B-12.  Crop N uptake (kg ha-1) by rate. Samples collected at R6 (2014).  

Figure B-13.  Crop N uptake (kg ha-1) by rate. Samples collected at R6 (2015).  
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Table B-18  

 

Crop Uptake by Rate (R6) ANOVA (2014-2015) 

 

Source of Variation DF F Value Pr > F 

treatment 2 9.57 0.0005 

year 1 33.17 <.0001 

rate 2 12.55 <.0001 

block 2 0.71 0.4992 

treatment*year 2 2.31 0.115 

treatment*rate 4 1.83 0.1452 

year*rate 2 2.17 0.1303 

treatment*year*rate 4 0.4 0.8098 

Note: ANOVA table depicts the response variable (R6 crop uptake) and probability 

values for each source of variation. 
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Figure B-14.  Average crop N uptake (kg ha-1) despite rate by growth stage 

(2014-2015). Samples collected throughout both corn growing seasons. 

Different letters indicate significant difference at individual growth stages    

(Alpha level of 0.05). No significant differences at V12 or VT.    
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Table B-19 

 

2014 Grain Yield at 200 kg N ha-1 ANOVA  

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 
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Source of Variation DF F Value Pr > F 

treatment 3 2.15 0.1946 

block 2 0.23 0.804 

Figure B-15.  Corn yield (Mg ha-1) by treatment at 200 kg N ha-1. Samples 

collected at harvest (2014).  
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Figure B-16. Corn yield (Mg ha-1) by treatment and rate. Samples collected at 

harvest (2014).  

Figure B-17.  Corn yield (Mg ha-1) by treatment, despite application rate. 

Samples collected at harvest (2014).  
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Table B-20 

 

2014 Grain Yield ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 3 2.22 0.1142 

rate 2 0.34 0.7128 

block 2 2.34 0.1195 

treatment*rate 6 0.94 0.4870 

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 

 

 

Table B-21   

Corn Yield despite Rate of Application 

Orthogonal Contrast (2014) DF F Value Pr > F 

Compare cereal rye with control 1 5.01 0.03 

Compare cereal rye/daikon radish with control 1 2.16 0.15 

Note. Displaying orthogonal contrast data directly comparing the yield between 
treatments, despite the rate of application (Alpha level of 0.05).     
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Table B-22 

 

2015 Grain Yield at 200 kg N ha-1 ANOVA  

 

Source of Variation DF F Value Pr > F 

treatment 3 0.8 0.536 

block 2 1.04 0.4084 

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 
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Figure B-18.  Corn yield (Mg ha-1) by treatment at 200 kg N ha-1. Samples 

collected at harvest (2015).  
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Figure B-19.  Corn yield (Mg ha-1) by treatment and rate. Samples collected at 

harvest (2015).  

Figure B-20.  Corn yield (Mg ha-1) by treatment, despite application rate. 

Samples collected at harvest (2014).  
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Table B-23  

 

2015 Grain Yield ANOVA  

 

Source of Variation DF   F Value Pr > F 

treatment 3   5.47 0.0058 

rate 2   18.17 <.0001 

block 2   1.30 0.2938 

treatment*rate 6   0.60 0.7276 

Note: ANOVA table depicts the response variable (grain yield) and probability values for 

each source of variation. 

 

 

Table B-24   

Corn Yield despite Rate of Application  

Orthogonal Contrast (2015) DF F Value Pr > F 

Compare cereal rye with control 1 0.89 0.35 

Compare cereal rye/daikon radish with control 1 7.50 0.01 

Note. Displaying orthogonal contrast data directly comparing the yield between 
treatments, despite the rate of application (Alpha level of 0.05).     
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